Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-29T06:30:01.468Z Has data issue: false hasContentIssue false

Thickness Dependent Perpendicular Magnetic Domain Patterns in Sputtered Epitaxial FePt (001) L10 Films

Published online by Cambridge University Press:  10 February 2011

J.-U. Thiele
Affiliation:
IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120
L. Folks
Affiliation:
IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120
M. F. Toney
Affiliation:
IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120
D. K. Weller
Affiliation:
IBM Almaden Research Center, 650 Harry Rd., San Jose, CA 95120
Get access

Abstract

The present paper discusses the magnetic anisotropy and magnetic domain structure of highly ordered epitaxial FePt(001) films grown on Pt seeded MgO(001) substrates. These films were grown by dc-magnetron sputtering from a Fe50Pt50 alloy target at a substrate temperature of 550°C during deposition. Thicknesses were varied between 15 and 170 nm. The presence of the highly anisotropic face centered tetragonal L10 crystal structure with a maximum long range chemical ordering of 95% and a low degree of misorientations was confirmed by specular and grazing incidence X-ray diffraction measurements. For film thicknesses ≥ 50 nm in-plane and out-of-plane hysteresis measurements indicate large perpendicular magnetic anisotropy and at the same time low remanent magnetisation. Magnetic force microscopy reveals highly interconnected perpendicular stripe domain patterns. From their characteristic width, which is strongly dependent on the film thickness, a value of the dipolar length, D0, of 50 ±5 nm is derived. Assuming an exchange constant of 10-6 erg/cm, this value is consistent with an anisotropy constant Ku ∼ 1.108 erg/cc.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Cebollada, A., Weller, D., Sticht, J., Harp, G. R., Farrow, R. F. C., Marks, R. F., Savoy, R., Scott, J. C., Phys. Rev. B 50, (1994) pp. 34193422.Google Scholar
[2] Charap, S. H., Lu, P.-L., He, Y., IEEE Trans. Mag. 33 (1997) pp. 978983.Google Scholar
[3] Klemmer, T., Hoydick, D., Okumura, H., Zhang, B., Soffa, W. A., Scripta Metallurgica et Materialia 33 (1995) pp. 17931805.Google Scholar
[4] Coffey, K. R., Parker, M. A., Howard, J. K., IEEE Trans. Mag. 31 (1995) pp. 27372739.Google Scholar
[5] Lairson, B. M., Visokay, M. R., Sinclair, R., Clemens, B. M., Appl. Phys. Lett. 62 (1993) pp. 639641.Google Scholar
[6] Watanabe, M., Homma, M., Jpn. J. Appl. Phys. 35 (1996) L1264–L1267Google Scholar
[7] Farrow, R F. C., Weller, D, Marks, R. F., Toney, M. F., J. Appl. Phys. 79 (1996) pp. 59675969.10.1063/1.362122Google Scholar
[8] Massalski, T. B., Binary alloy phase diagrams 2nd ed., ASM International (1990).Google Scholar
[9] Thiele, J.-U., Folks, L., Toney, M. F., Weller, D. K., J. Appl. Phys., submitted for publication (5/98).Google Scholar
[10] Landau, L. D., Lifshitz, E., Physik. Zeits. Sowjetunion 8 (1935) pp. 153156.Google Scholar
[11] Kittel, C., Phys. Rev. 70 (1946) pp. 965971.10.1103/PhysRev.70.965Google Scholar
[12] Belliard, L., Thiaville, A., Lemerle, S., Lagrange, A., Ferre, J., J. Miltat J. Appl. Phys. 81 (1997) pp. 38493851.Google Scholar
[13] Kooy, C., Enz, U., Philips Res. Rep. 15 (1960) pp. 729.Google Scholar
[14] Allenspach, R., Stampanoni, M., Bischof, A., Phys. Rev. Lett. 65 (1990) pp. 33443347.Google Scholar
[15] Farrow, R. F. C., Weller, D., Marks, R. F., Toney, M. F., Horn, S., Harp, G. R., Cebollada, A., Appl. Phys Lett. 69, (1996) pp. 11661168.Google Scholar
[16] Gehanno, V., Samson, Y., Marty, A., Gilles, B., Chamberod, A., J. Mag. Mag. Mat. 172 (1997) pp. 2640.Google Scholar
[17] Kaplan, B., Gehring, G. A., J. Mag. Mag. Mat. 128 (1993) pp. 111116.Google Scholar