Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:21:42.470Z Has data issue: false hasContentIssue false

Thin Film Diamond Field Effect Transistors For High Power Applications

Published online by Cambridge University Press:  10 February 2011

Hui Jin Looi
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. r.jackman@eleceng.ucl.ac.uk
Lisa Ys Pang
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. r.jackman@eleceng.ucl.ac.uk
Richard B. Jackman
Affiliation:
Electronic and Electrical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. r.jackman@eleceng.ucl.ac.uk
Get access

Abstract

Early predictions that diamond would be a suitable material for high performance, high power devices were not supported by the characteristics of diodes and field effect transistors (FETs) fabricated on boron doped (p-type) thin film material. In this paper commercially accessible polycrystalline thin film diamond has been turned p-type by the incorporation of near surface hydrogen. Schottky diodes and metal-semiconductor FETs (MESFETs) have been fabricated using this approach which display unprecedented performance levels; diodes with a rectification ratio > 106, leakage currents < l nA, no indication of reverse bias breakdown at 100V and an ideality factor of 1.1 have been made. Simple MESFET structures that are capable of withstanding VDS values of 100V with low leakage and current saturation (pinch-off) characteristics have also been fabricated. Predictions based upon experiments performed on these devices suggest that optimised device structures will be capable of operation at power levels up to 20 W/mm, implying that thin film diamond may after all be an interesting material for power applications.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Geis, M. W., Rothman, D. D., Ehrlich, D. J., Murphy, R. A. and Lindley, W. T., IEEE Electron Dev. Lett. 8, 341 (1987)Google Scholar
2. Gildenblat, G. Sh., Grot, S. A. and Badzian, A., Proc. of IEEE vol.79, 647 (1991)Google Scholar
3. Sonoda, S., Won, J. H., Yagi, H., Hatta, A., Ito, T. and Hiraki, A., Appl. Phys. Lett. 70, 2574 (1997)Google Scholar
4. Werner, M., Dorsch, O., Baerwind, H. U., Obermeier, E., Haase, L., Seifert, W., Ringhandt, A., Johnston, C., Romani, S., Bishop, H. and Chalker, P. R., Appl. Phys. Lett. 64, 595 (1994)Google Scholar
5. Nishimura, K., Kumagai, K., Nakamura, R. and Kobashi, K., J. Appl. Phys. 76, 8142 (1994)Google Scholar
6. Pang, L. Y. S., Chan, S. S. M. and Jackman, R. B., Appl. Phys. Lett. 70, 339 (1997)Google Scholar
7. Kawarada, H., Aoki, M. and Ito, M., Appl. Phys. Lett. 65, 1563 (1994)10.1063/1.112915Google Scholar
8. Hokazono, A., Ishikura, T., Nakamura, K., Yamashita, S. and Kawarada, H., Diamond & Relat. Mater. 5, 706 (1996)Google Scholar
9. Shirafuji, J. and Sugino, T., Diamond & Relat. Mater. 5, 706 (1995)Google Scholar
10. Kawarada, H., Sasaki, H. and Sato, A., Physics Rev. B 52, 11351 (1995)10.1103/PhysRevB.52.11351Google Scholar
11. Hayashi, K., Yamanaka, S., Okushi, H. and Kajimura, K., Appl. Phys. Lett. 68, 376 (1996)Google Scholar
12. Looi, H. J., Pang, L. Y. S., Molloy, A. B., Jones, F., Foord, J. S. and Jackman, R. B., Diamond & Relat. Mater. (in press DIAMAT 1055)Google Scholar
13. Looi, H. J., Foord, J. S. and Jackman, R. B., Appl. Phys. Lett. (in press)Google Scholar
14. Malta, D. M., Windheim, J. A. and Fox, B. A., Appl. Phys. Lett. 62, 2926 (1993)Google Scholar
15. Mori, Y., Kawarada, H. and Hiraki, A., Appl. Phys. Lett. 58, 940 (1990)Google Scholar
16. Shiomi, H., Nakahata, H., Imai, T., Nishibayashi, Y. and Fujimori, N., Jpn J. Appl. Phys. 28, 758 (1989)Google Scholar
17. Gildenblat, G. Sh., Grot, S. A., Hatfield, C. W., Badzian, A. R. and Badzian, T., IEEE Electron Dev. Lett. 11, 371 (1993)10.1109/55.62959Google Scholar
18. Looi, H. J., Foord, J. S. and Jackman, R. B., J. Appl. Phys. (in press)Google Scholar
19. Sriram, S., Siergiej, R. R., Clarke, R. C., Agarwal, A. K., Brandt, C. D., Physica Status Solidi (A) Applied Research vol.162, 441 (1997)10.1002/1521-396X(199707)162:1<441::AID-PSSA441>3.0.CO;2-33.0.CO;2-3>Google Scholar
20. Werner, M., Dorsch, O., Baerwind, H. U., Obermeier, E., Johnston, C., Chalker, P. R. and Romani, S., IEEE Transactions on Electron Devices 42, 1344 (1995)Google Scholar