Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-28T10:07:56.079Z Has data issue: false hasContentIssue false

Thin Film Electronic Properties of Ternary Topological Insulator

Published online by Cambridge University Press:  18 May 2012

Jiwon Chang
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, U.S.A.
Leonard F. Register
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, U.S.A.
Sanjay K. Banerjee
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, U.S.A.
Bhagawan Sahu
Affiliation:
Microelectronics Research Center, The University of Texas at Austin, Austin, TX 78758, U.S.A.
Get access

Abstract

Using an ab initio density functional theory (DFT), we study thin film electronic properties of topological insulators (TIs) based on ternary compounds of Tl (thallium) and Bi (bismuth). We consider TlBiX2 (X=Se, Te) and Bi2X2Y (X, Y=Se, Te) compounds. Here we discuss the nature of surface states, their locations in the Brillouin Zone (BZ) and their interactions within the bulk region. Our calculations suggest a critical film thickness to maintain the Dirac cone which is smaller than that in binary Bi-based compounds. Atomic relaxations are found to affect the Dirac cone in some of these compounds. We discuss the penetration depth of surface states into the bulk region.

Type
Research Article
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sato, T., Segawa, K., Guo, H., Sugawara, K., Souma, S., Takahashi, T., and Ando, Y., Phys. Rev. Lett. 105, 136802 (2010).Google Scholar
2. Kuroda, K., Ye, M., Kimura, A., Eremeev, S. V., Krasovskii, E. E., Chulkov, E. V., Ueda, Y., Miyamoto, K., Okuda, T., Shimada, K., Namatame, H., and Taniguchi, M., ibid. 105, 146801 (2010).Google Scholar
3. Lin, H., Markiewicz, R. S., Wray, L. A., Fu, L., Hasan, M. Z., and Bansil, A., Phys. Rev. Lett. 105, 036404 (2010).Google Scholar
4. Kresse, G. and Furthmuller, J., Comput. Mater. Sci. 6, 15 (1996).Google Scholar
5. Perdew, J. P., Burke, K., and Ernzerhof, M., Phys. Rev. Lett. 77, 3865 (1996).Google Scholar
6. Hobbs, D., Kresse, G., and Hafner, J., Phys. Rev. B 62, 11556 (2000).Google Scholar
7. Nakajima, S., J. Phys. Chem. Solids 24, 479 (1963).Google Scholar
8. Park, K., Heremans, J. J., Scarola, V. W., and Minic, Djordje, Phys. Rev. Lett. 105, 186801 (2010).Google Scholar
9. Lin, H., Markiewicz, R. S., Wray, L. A., Fu, L., Hasan, M. Z., and Bansil, A., Phys. Rev. Lett. 105, 036404 (2010).Google Scholar
10. Sato, T., Segawa, K., Guo, H., Sugawara, K., Souma, S., Takahashi, T., and Ando, Y., Phys. Rev. Lett. 105, 136802 (2010).Google Scholar
11. Chen, Y. L., Liu, Z. K., Analytis, J. G., Chu, J.-H., Zhang, H. J., Yan, B. H., Mo, S.-K., Moore, R. G., Lu, D. H., Fisher, I. R., Zhang, S.-C., Hussain, Z., and Shen, Z.-X., Phys. Rev. Lett. 105, 266401 (2010).Google Scholar