Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T10:18:48.909Z Has data issue: false hasContentIssue false

Thin Films of Titanium Dioxide Prepared by Chemical Routes using Novel Precursors

Published online by Cambridge University Press:  11 February 2011

K. Shalini
Affiliation:
Materials Research Centre
S. Chandrasekaran
Affiliation:
Department of Organic Chemistry, Indian Institute of Science, Bangalore – 560012, India.
S.A. Shivashankar
Affiliation:
Materials Research Centre
Get access

Abstract

Novel, volatile, stable, oxo-β-ketoesterate complexes of titanium, whose synthesis requires only an inert atmosphere, as opposed to a glove box, have been developed. Using one of the complexes as the precursor, thin films of TiO2 have been deposited on glass substrates by metalorganic chemical vapor deposition (MOCVD) at temperatures ranging from 400°C to 525°C and characterized by scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. All the films grown in this temperature range are very smooth; those grown above 480°C consist of nearly monodisperse, nanocrystals of the anatase phase. Optical studies show the bandgaps in the range 3.4–3.7 eV for films grown at different temperatures. Thin films of anatase TiO2 have also been grown by spin-coating technique using another ketoesterate complex of titanium, demonstrating that the newly developed complexes can be successfully used for thin film growth by various chemical routes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

O'Regan, B. and Grätzel, M., Nature 353, 737 (1991).Google Scholar
Barbé, C.J., Arendse, F., Comte, P., Jirousek, M., Lenzmann, F., Shklover, V., Grätzel, M., J. Am. Ceram. Soc. 80, 3157 (1997).Google Scholar
3. Gilbert, S. R., Wills, L. A., Wessels, B. W., Schindler, J. L., Thomas, J. A., Kannewurf, C. R., J. Appl. Phys. 80, 969 (1996).Google Scholar
4. Nagano, D., Funakubo, H., Sakurai, O., Shinozaki, K., Mizutani, N., J. Mater. Res. 12, 1655 (1997).Google Scholar
5. Akhtar, M.K., Pratsinis, S.E., Mastrangelo, S.V.R., J. Mater. Res. 9, 1241 (1994).Google Scholar
6. Gilbert, S.R., Wessels, B.W., Studebaker, D.B., Marks, T.J., Appl. Phys. Lett. 66, 24 (1995).Google Scholar
7. Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Fleeting, K.A., Otway, D.J., O'Brien, P., Pemble, M.E., J. Mater. Chem. 8, 1773 (1998).Google Scholar
8. Ryu, H.-Kyu, Heo, J. S., Cho, S., Moon, S. H., J. Electrochem. Soc. 146, 1117 (1999).Google Scholar
9. Turgambaeva, A.E., Krisyuk, V.V., Sysoev, S.V., Igumenov, I.K., Chem. Vap. Deposition 7, 121 (2001).Google Scholar
10. Awaluddin, A., Pemble, M.E., Jones, A.C., Williams, P.A., J. Phys. IV 11, Pr3531 (2001).Google Scholar
11. Xu, W.W., Kershaw, R., Dwight, K., Wold, A., Mat. Res. Bull. 25, 1385 (1990).Google Scholar
12. Sahana, M.B., Dharmaprakash, M.S., Shivashankar, S.A., J. Mater. Chem. 12, 333 (2002).Google Scholar
13. Devi, A., Goswami, J., Lakshmi, R., Shivashankar, S. A., J. Mater. Res. 13, 687 (1998).Google Scholar
14. Devi, A. and Shivashankar, S.A., J. Mater. Sci. Lett. 17, 367 (1998).Google Scholar
15. Fahlman, B.D. and Barron, A.R., Adv. Mater. Opt. Electron. 10, 223 (2000).Google Scholar
16. Golego, N., Studenikin, S.A., Cocivera, M., J. Mater. Res. 14, 698 (1999).Google Scholar
17. Lu, Z.H., Lockwood, D.J., Baribeau, J.M., Nature 378, 258 (1995).Google Scholar