Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T19:42:12.061Z Has data issue: false hasContentIssue false

Thin-Film Transistors on PET at 100°C

Published online by Cambridge University Press:  01 February 2011

J.P. Conde
Affiliation:
Departament of Materials Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
P. Alpuim
Affiliation:
Departament of Materials Engineering, Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisbon, Portugal INESC Microsystems and Nanotechnologies, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
V. Chu
Affiliation:
INESC Microsystems and Nanotechnologies, Rua Alves Redol 9, 1000-029 Lisbon, Portugal
Get access

Abstract

Bottom-gate amorphous silicon thin-film transistors were fabricated on a polyethylene terephthalate substrate. The maximum processing temperature was 100°C. The transistor characteristics are comparable, although still inferior, to those of standard amorphous silicon transistors fabricated on glass substrates. To obtain these characteristics, an extended anneal the processing temperature was required. The devices were fabricated using separately optimized low-temperature active layer, contact layer and gate dielectric layer. To achieve good electronic properties for these layers, hydrogen dilution was required.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gates, S.M., Mater. Res. Soc. Symp. Proc. 467, edited by Wagner, S., Hack, M., Schiff, E., Schropp, R., and Shimizu, I. (Pittsburgh, PA, 1997), pp. 843.Google Scholar
2. Lumeski, V., Shur, M.S., Wagner, S., Sensitive Skin, Selected Topics in Electronics and Systems, vol. 18, World Scientific, Singapore 2000.Google Scholar
3. Gleskova, H., Wagner, S., Suo, Z., Mater. Res. Soc. Symp. Proc. 508, edited by Parsons, G.N., Tsai, C.C., Fahlen, T.S., Seager, C.H. (Pittsburgh, PA, 1998), pp. 73.Google Scholar
4. Yang, C.S., Smith, L.L., Arthur, C.B., Parsons, G.N., J. Vac. Sci. Technol. B 18, 683(2000).10.1116/1.591259Google Scholar
5. Alpuim, P., Chu, V., Conde, J.P., J. Appl. Phys. 86, 3812(1999).10.1063/1.371292Google Scholar
6. Alpuim, P., Chu, V., Conde, J.P., Mater. Res. Soc. Symp. Proc. 609, edited by Branz, H., Colins, R., Guha, S., Okamoto, H., and Stutzmann, M. (Pittsburgh, PA, 2000), pp. A.22.6.Google Scholar
7. Alpuim, P., Chu, V., Conde, J.P., submitted for publication.Google Scholar
8. Mohammad, S.N., Tao, M., Park, D.G., Botchkarev, A.E., Li, D., Morkoç, H., Phil. Mag. B 73, 817(1996).10.1080/13642819608239155Google Scholar
9. Klein, T.M., Anderson, T.M., Chowdhury, A.I., Parsons, G.N., J. Vac. Sci. Technol. A 17, 108(1999).10.1116/1.582104Google Scholar
10. Alpuim, P., Ferreira, P., Chu, V., Conde, J.P., J. Non-Cryst. Solids, in press (2002).Google Scholar
11. Lanford, W.A., Rand, M.J., J. Appl. Phys. 49, 2473(1978).10.1063/1.325095Google Scholar