Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:19:08.338Z Has data issue: false hasContentIssue false

Three Dimensional Finite Element Simulations of Vertical Dot Correlation in Quantum Dot Superlattice

Published online by Cambridge University Press:  10 February 2011

Y.W. Zhang*
Affiliation:
Institute of Materials Research and Engineering, National University of Singapore, Singapore, 119260, yw-zhang@imre.org.sg
Get access

Abstract

A three dimensional finite element method is used to simulate the kinetic process of island formation in quantum dot superlattices. Depending on the thickness of spacer layers and interruption time, top layer islands can be fully vertically aligned with the same morphology as the buried islands, or can be partially vertically aligned with increasingly less uniform and regular arrangement, or can be alternately misaligned with increasingly uniform and regular arrangement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Teichert, C., Lagally, M.G., Petcolas, L. J., Bean, J. C. and Tersoff, J., Phys. Rev. B 53, 16334 (1996).10.1103/PhysRevB.53.16334Google Scholar
2. Tersoff, J., Teichert, C. and Lagally, M. G., Phys. Rev. Lett. 76, 1675 (1996).10.1103/PhysRevLett.76.1675Google Scholar
3. Xie, Q., Madhukar, A., Chen, P. and Kobayashi, N. P., Phys. Rev. Lett. 75, 2542 (1995).10.1103/PhysRevLett.75.2542Google Scholar
4. Mirin, R. P., Ibbeston, J. P., Bowers, J. E. and Gossard, A. E., J. Crystal Growth 175/176, 696 (1997).10.1016/S0022-0248(96)00870-6Google Scholar
5. Lee, H. J., Ryu, H., Leam, J. Y., Noh, S. K., Lee, H. G. and Nahm, S., J. Crystal Growth 172, 18 (1997).10.1016/S0022-0248(96)00729-4Google Scholar
6. Nakata, Y., Sugiyama, Y., Futatsuqi, T. and Yokoyama, N., J. Crystal Growth 175/176, 713 (1997).10.1016/S0022-0248(96)00814-7Google Scholar
7. Pan, D., Zeng, Y. P., Li, J. M., Zhang, C. H., Kong, M. Y., Wang, H. M., Wang, C. Y., Wu, J., J. Crystal Growth 175/176, 760 (1997).10.1016/S0022-0248(96)01010-XGoogle Scholar
8. Liao, X. Z., Zou, J., Duan, X. F., Cockayne, J. J. H., Leon, R., and Lobo, C., Phys. Rev. B 58(8), R4235 (1998).10.1103/PhysRevB.58.R4235Google Scholar
9. Bimberg, D., Grundmann, M., and Ledentsov, N. N., MRS Bulletin 23(2), 31 (1998).10.1557/S0883769400031249Google Scholar
10. Zhang, Y. W., Xu, S. J. and Chiu, C.-h., Appl. Phys. Lett. 74(13),1089 (1999).Google Scholar
11. Zhang, Y. W., Bower, A. F., Xia, L. and Shih, C. F., J. Mech. Phys. Solids 47, 173 (1999).10.1016/S0022-5096(98)00079-9Google Scholar