Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T00:46:41.567Z Has data issue: false hasContentIssue false

Three-Body Correlation in the Diluted Generalized Hubbard Model

Published online by Cambridge University Press:  10 February 2011

O. Navarro
Affiliation:
Instituto de Investigaciones en Materiales, U.N.A.M., Apartado Postal 70–360, 01510, Mexico D.F., MEXICO.
M. Avignon
Affiliation:
Laboratoire d'Etudes des Propiétés Electroniques des Solides, C.N.R.S., Boîte Postale 166, 38042 Grenoble Cedex 9, FRANCE.
Get access

Abstract

A real-space method has been used to solve the generalized Hubbard Hamiltonian for a system with few electrons. The method is based on mapping the correlated many-body problem onto an equivalent tight-binding one in a higher dimensional space. For a linear chain, we have obtained an exact solution of the problem of three non-parallel electrons. The three-body correlation are studied by examining the binding energy in the ground state, for different values of the hopping parameters and of the on-site (U) and nearest-neighbor (V) interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bednorz, J.G., Müller, K.A., Z. Phys. B64, 189 (1986).Google Scholar
[2] Anderson, P.W., Science 235 1196 (1987); Phys. Rev. Lett. 64, 1839 (1990).Google Scholar
[3] Micnas, R., Rarminger, J. and Robaszkiewicz, S., Rev. Mod. Phys. 62 113 (1990);Google Scholar
The Hvbbard Model: Recent results, edited by Rosetti, M., Series on Advances in Statistical Mechanics (World Scientific, Singapore, 1992) Vol. 7.Google Scholar
[4] Hirsch, J. E. and Marsiglio, F., Phys. Rev. B 41, 2049 (1990).Google Scholar
[5] Strack, R. and Vollhardt, D., Phys. Rev. Lett. 70, 2637 (1993).Google Scholar
[6] Ovchinikov, A. A., Mod. Phys. Lett. B 7, 21 (1993).Google Scholar
[7] Arrachea, L. and Aligia, A. A., Phys. Rev. Lett. 73 2240 (1994);Google Scholar
Gagliano, , Aligia, A. A., Arrache, L. and Avignon, M., Phys. Rev B 51, 14012 (1995).Google Scholar
[8] Navarro, O., Czech, . J. Phys. 46, S4 1867 (1996).Google Scholar
[9] Navarro, O. and Wang, C., Solid State Commun. 83, 473 (1992);Google Scholar
Pérez, L. A., Navarro, O. and Wang, C., Phys. Rev. B 53, 15389 (1996);Google Scholar
Navarro, O., Introducción a la Superconductividad (Aula Magna UAS, Vol. Il, 1997).Google Scholar
[10] Falicov, L. M. and Yndurain, F., J. of Phys. C: 8 147 (1975).Google Scholar
[11] Wang, C., Navarro, O. and Oviedo-Roa, R., Mat. Res. Soc. Symp. Proc. 291, 279 (1993).Google Scholar