Published online by Cambridge University Press: 07 December 2012
Intermetallic TiAl alloys are of interest to the aero engine industry because of their light weight, corrosion resistance and excellent high temperature strength. This justifies the continued effort to improve properties and processing of these alloys.
A critical parameter that limits the practical implementation of Ti aluminides is their low ductility at room temperature. Recently, a new class of TiAl alloys based on a modulated lath structure has been introduced that exhibit an excellent combination of ductility and strength. A key component in this alloy is the orthorhombic phase B19 that is attributed to alloying with high amounts of niobium. The driving forces and mechanisms that lead to the observed modulated structures involving the B19 phase are not fully understood yet. As a first step to a better understanding we present a study of the thermal stability range of the phases involved.