Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-28T10:02:00.127Z Has data issue: false hasContentIssue false

A Tight-Binding Model Beyond Two-Center Approximation

Published online by Cambridge University Press:  10 February 2011

C. Z. Wang
Affiliation:
Ames Laboratory-USDOE, and Department of Physics, Iowa State University, Ames, IA 50011
M. S. Tang
Affiliation:
Ames Laboratory-USDOE, and Department of Physics, Iowa State University, Ames, IA 50011
Bicai Pan
Affiliation:
Ames Laboratory-USDOE, and Department of Physics, Iowa State University, Ames, IA 50011
C. T. Chan
Affiliation:
Ames Laboratory-USDOE, and Department of Physics, Iowa State University, Ames, IA 50011
K. M. Ho
Affiliation:
Ames Laboratory-USDOE, and Department of Physics, Iowa State University, Ames, IA 50011
Get access

Abstract

We present a tight-binding model which goes beyond the traditional two-center approximation and allows the hopping parameters and the repulsive energy to be dependent on the bonding environment. We show that this model works well for metallic as well as covalent systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. For review, see Wang, C. Z., Ho, K. M., and Chan, C. T., Comp. Mat. Sci, 2, 93 (1994); C. Z. Wang and K. M. Ho, Adv. Chem. Phys. in press.Google Scholar
2. Slater, J. C. and Koster, G. F., Phys. Rev. 94, 1498 (1954).Google Scholar
3. Harrison, W. A., Electronic Structure and the Properties of Solids, (Freeman, San Francisco 1980).Google Scholar
4. Chadi, D. J., Phys. Rev. Lett. 41, 1062 (1978); Phys. Rev. B 29, 785 (1984).Google Scholar
5. Goodwin, L., Skinner, A.J., and Pettifor, D.G., Europhys. Lett. 9, 701 (1989).Google Scholar
6. Sawada, S., Vacuum 41, 612 (1990).Google Scholar
7. Kohyama, M., J. Phys: Condens. Matter 3, 2193 (1991).Google Scholar
8. Xu, C. H., Wang, C. Z., Chan, C. T., and Ho, K. M., J. Phys: Condensed Matter, 4, 6047 (1992).Google Scholar
9. Kwon, I., Biswas, R., Wang, C. Z., Ho, K. M., and Soukoulis, C. M., Phys. Rev. B 49, 7242 (1994).Google Scholar
10. Mercer, J. L. Jr, and Chou, M. Y., Phys. Rev. B 47, 9366 (1993); 49, 8506 (1994).Google Scholar
11. Cohen, R. E., Mehl, M. J., and Papaconstantopoulos, D. A., Phys. Rev. B 50, 14694 (1994).Google Scholar
12. Chelikowsky, J. R., Louie, S. G., Vanderbilt, D. and Chan, C. T., Int. J. of Quantum Chem. Quantum Chem. Symp. 18, 105 (1984).Google Scholar
13. Perdew, P. and Zunger, A., Phys. Rev. B 23, 5048 (1981).Google Scholar
14. Perdew, P. and Wang, Y., Phys. Rev. B 33, 8800 (1986).Google Scholar
15. Tang, M. S., Wang, C. Z., Chan, C. T., and Ho, K. M., to be published.Google Scholar
16. Pan, B. C., Wang, C. Z., Ho, K. M., and Tang, M. S., to be published.Google Scholar
17. Semiconductors: Physics of Group IV Elements and III-V Compounds, Landolt-Bornstein New Series 111/17a, Eds. Madelung, O., Schulz, M., and Weiss, H., (Springer-Verlag, 1982); Semiconductors: Intrinsic Properties of Group IV Elements and III- V, Il- VI and I- VII Compounds, Landolt-Bornstein New Series 111/22a, Eds. O. Madelung, M. Schulz, (Springer-Verlag, 1987).Google Scholar
18. Dresselhaus, M. S. and Dresselhaus, G., in Light Scattering in Solids III, ed. Cardona, M. and Guntherodt, G. (Springer, Berlin, 1982) p. 8.Google Scholar