Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-14T06:51:46.760Z Has data issue: false hasContentIssue false

Time Dependent Parallel Resistance in an Organic Schottky Contact

Published online by Cambridge University Press:  01 February 2011

Arash Takshi
Affiliation:
Electrical and Computer Engineering, The University of British Columbia (UBC) Vancouver, BC V6T 1Z4, Canada
John D. Madden
Affiliation:
Electrical and Computer Engineering, The University of British Columbia (UBC) Vancouver, BC V6T 1Z4, Canada
Chi Wah Eddie Fok
Affiliation:
Electrical and Computer Engineering, The University of British Columbia (UBC) Vancouver, BC V6T 1Z4, Canada
Mya Warren
Affiliation:
Department of Physics and Astronomy, The University of British Columbia (UBC) Vancouver, BC V6T 1Z1, Canada
Get access

Abstract

The DC characteristics of a Schottky contact between regioregular poly (3-hexylthiophene) and aluminum are studied in forward and reverse bias regimes. Current-voltage curves of the junction in reverse bias show a resistive path in parallel with the expected Schottky contact. This is the sign of a nonuniform junction between the metal and semiconductor that exhibits ohmic behavior in some regions. Reduction of this parallel resistance and degradation of the Schottky junction are observed over a period of two weeks. Accumulation of undesired ions in the polymer or diffusion of aluminum atoms into the semiconductor are two possible mechanisms which may explain the time dependent behavior of these Schottky junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Brutting, W., Berleb, S., Muckl, A.G., Organic Electronics 2(2001) 136.Google Scholar
2 Chiguvare, Z., Parisi, J., Dyakonov, V., J. Appl. Phys. 94, 2440 (2003).Google Scholar
3 Rikken, G.L.A., Braun, D., Staring, E.G.J., Demandt, R., Appl. Phys. Lett. 65, 219 (1994).Google Scholar
4 Sze, S. M., “Physics of Semiconductor Devices”, 2nd ed, John Wiley, 1981.Google Scholar
5 Meijer, E.J., Detcheverry, C., Baesjou, P.J., Veenendaal, E.van, Leeuw, D.M. de, Klawijk, T.M., J. Appl. Phys. 93, 4831 (2003)Google Scholar
6 Friend, R.H., Gymer, R.W., Holmes, A.B., Burroughes, J.H., Marks, R.N., Taliani, C., Bradley, D.D.C., Santos, D.A. Dos, Bredas, J.L., Logdlund, M., Salaneck, W.R., Nature 397, 121 (1999).Google Scholar
7 Shaw, J.M., Seidler, P.F., IBM J. RES & DEV, Vol. 45, No 1, 39 (2001).Google Scholar
8 Koezuka, H., Tsumra, A., Fuchigaml, H., Kuramoto, K., Appl. Phys. Lett. 62, 1794 (1993).Google Scholar
9 Aleshin, A.M., Sandberg, H., Stubb, H., Synthetic Metals 121 (2001) 14491450.Google Scholar
10 Fujihira, M., Do, L.M., Koike, A., Han, E. M., Appl. Phys. Lett. 68, 1787 (1996).Google Scholar
11 Schaer, M., Nüesch, F., Berner, D., Leo, W., Zuppiroli, L., Adv. Funct. Mater. 2001, 11, No. 2, 116121.Google Scholar
12 Burrows, P.E., Bulovic, V., Forrest, S.R., Sapochak, L.S., McCarty, D.M., Thompson, M.E., Appl. Phys. Lett. 65 (23) 2922 (1994).Google Scholar