Published online by Cambridge University Press: 01 February 2011
We present a time-resolved magneto-optical (MO) imaging study of high-temperature superconductor (HTS) in high-frequency alternating current (AC) regime. The evolution of the magnetic flux density distribution in YBa2Cu3O7-d (YBCO) thin film samples is studied in small steps of the phase of the applied AC current. The flux distribution at 10 K exhibits instabilities including flux jumps and flux creep. A quantitative analysis of the data allows us to obtain the current density evolution. The current profile changes considerably with the phase differently from the prediction of the critical state model. These observations can be explained by the higher self-field at the sample edge and the effects of flux creep.