Published online by Cambridge University Press: 01 February 2011
The time resolved and DC photoconduction characteristics of Si nanowire devices are described. Si nanowires with diameters ranging from 20-100 nm were grown using the vapor-liquid-solid (VLS) growth mechanism under standard conditions and devices were fabricated in a back-gate field effect transistor (FET) configuration using simple photolithography. It is shown that under certain biasing conditions, illumination with light from light emitting diodes with wavelengths ranging from 480 nm to 625 nm causes changes in current as high as 4%. On the other hand, illumination by a broadband incandescent source causes a ∼4.1% percent change in current. Photoconductive decay curves show bi- and tri-exponential behavior, indicative of multiple potential recombination mechanisms occurring within the Si nanowire devices. p-n doped Si nanowires show similar behavior. Studies under various drain and gate voltages provides insight into the proposed mechanism. It is argued that the Shottky barrier plays a strong role in the observed photoconduction process in these wires, as do transitions involving surface and deep level trap states.