Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-13T02:08:21.223Z Has data issue: false hasContentIssue false

Tin as a Diffusion Barrier Between CoSi2 or PtSi and Aluminum

Published online by Cambridge University Press:  15 February 2011

R. J. Schutz*
Affiliation:
Bell Laboratories, Murray Hill, NJ 07974, (U.S.A.)
Get access

Abstract

The effectiveness of a thin (360Å) layer of reactively sputtered TiN as a diffusion barrier between aluminum and two silicides (PtSi and CoSi2) was evaluated. The chemical composition, structural phases and electrical properties of silicide/Al and silicide/TiN/Al contacts to n-type silicon were studied by Rutherford backscattering spectroscopy, glancing angle X-ray diffraction and Schottky barrier height measurements respectively. The results show that TiN is an effective barrier in these two systems up to at least 450°C, the typical temperature at which aluminum contacts are sintered.

Type
Research Article
Copyright
Copyright © Materials Research Society 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Murarka, S. P., Fraser, D. B., Sinha, A. K. and Levinstein, H. J., IEEE J. Solid-State Circuits, 15 (1980) 474.Google Scholar
2 Koeneke, C. J., Sze, S. M., Levin, R. M. and Kinsbron, E., Proc. Int. Electron Devices Meet., 1981, IEEE, New York, p. 367.Google Scholar
3 Poate, J. M., Tu, K. N and Mayer, J. W. (eds.), Thin Films—Interdiffusion and Reactions, Wiley, New York, 1978.Google Scholar
4 Wittmer, M., Appl. Phys. Lett., 37 (1980) 540.Google Scholar
5 Fournier, P. R., U.S. Patent 3, 798, 145, 1974.Google Scholar
5a von Seefeld, H., Cheung, N. W., Mäenpää, M. and Nicolet, M.–A., IEEE Trans. Electron Devices, 27 (1980) 873.Google Scholar
6 Sze, S. M., Physics of Semiconductor Devices, Wiley, New York, 1981.Google Scholar
7 Tu, K. N. and Berry, B. S., J. Appl. Phys., 43 (1972) 3283.Google Scholar
8 Beattie, and Ver Snyder, , Trans. Am. Soc. Met., 45 (1953) 397.Google Scholar
9 Aáiroff, L. V., Elements of X-ray Crystallography, McGraw-Hill, New York, 1968.Google Scholar
10 Garceau, W. J., Fournier, P. R. and Herb, G. K., Thin Solid Films, 60 (1979) 237.Google Scholar
11 Smith, T. E., unpublished results.Google Scholar
12 Comer, J. J., Acta Crystallogr., 17(1964) 444.Google Scholar
13 Murarka, S. P., Blech, I. A. and Levinstein, H. J., J. Appl. Phys., 47 (1976) 5175.Google Scholar
14 van Gurp, G. J., Daams, J. L. C., Van Oostrom, A., Augustus, L. J. M. and Tamminga, Y., J. Appl. Phys., 50 (1979) 6915.Google Scholar
15 van Gurp, G. J. and Reukers, W. M., J. Appl. Phys., 50 (1979) 6923.Google Scholar
16 JCPDS card 6–0699, Joint Committee on Powder Diffraction Standards, Philadelphia, PA.Google Scholar
17 Hudd, R. C. and Taylor, W. H., Acta Crystallogr., 15 (1962) 441.Google Scholar
18 van Gurp, G. J., J. Appl. Phys., 46 (1975) 4308.Google Scholar
19 Hosack, H. H., J. Appl. Phys., 44 (1973) 3476.Google Scholar
20 Bernard, W., Rinder, W. and Roth, H., J. Appl. Phys., 35 (1964) 1860.Google Scholar