Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-15T01:10:29.645Z Has data issue: false hasContentIssue false

Titanium Deposition on Polymer Surfaces: An Xps Study

Published online by Cambridge University Press:  15 February 2011

K. Konstadinidis
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
R. L. Opila
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
J. A. Taylor
Affiliation:
AT&T Bell Laboratories, Allentown, PA 18103
A. C. Miller
Affiliation:
Lehigh University, Bethlehem, PA 18105
Get access

Abstract

We have used X-ray Photoelectron Spectroscopy to study the chemical interactions at the interface formed during in situ deposition of Ti atoms on triazine, polyimide (PMDAODA), and polystyrene surfaces. For deposition on thin triazine films (∼ 100Å) we observe that titanium carbide is the dominant product, while oxides and nitrides are formed as well. Aging in air causes the carbide and nitride to convert to the more thermodynamically stable oxide. Titanium carbide is also the primary species at the Ti/polyimide and Ti/polystyrene interface. In all cases the reaction of Ti atoms with different sites in the polymer is nonselective.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ho, P. S., Hahn, P. O., Bartha, J. W., Rubloff, G. W., Legoues, F. K., and Silverman, B. D., J. Vac. Sci. Technol. A. 3, 739 (1985).CrossRefGoogle Scholar
2. Haight, R., White, R. C., Silverman, B. D., and Ho, P. S., J. Vac. Sci. Technol. A. 6, 2188 (1988).Google Scholar
3. Bartha, J. W., Hahn, P. O., Legoues, F. K., and Ho, P. S., J. Vac. Sci. Technol. A. 3, 1390 (1985).Google Scholar
4. Hahn, P. O., Rubloff, G. W., Bartha, J. W., Legoues, F. K., Tromp, R., and Ho, P. S., Mat. Res. Soc. Symp. Proc. 40, 251 (1985).Google Scholar
5. Hahn, P. O., Rubloff, G. W., and Ho, P. S., J. Vac. Sci. Technol. A. 2, 756 (1984).Google Scholar
6. Tromp, R. Legoues, F. K., and Ho, P. S., J. Vac. Sci. Technol. A. 2, 782 (1985).CrossRefGoogle Scholar
7. Furman, B. K., Childs, K. D., Clearfield, H., Davis, R., and Purushothaman, S., J. Vac. Sci. Technol. A. 10, 2913 (1992).Google Scholar
8. Ohuchi, F. S. and Freilich, S. C., J. Vac. Sci. Technol. A. 4, 1039 (1986).Google Scholar
9. Opila, R. L., MaSaitis, R. L., Ibidunni, A. O., Taylor, J. A., Davenport, A. J., and Isaacs, H. S., J. Elec. Soc., submitted (1993).Google Scholar
10. Konstadinidis, K., Opila, R. L., Taylor, J. A., and Miller, A. C., Journal of Adhesion, in print, (1993).Google Scholar
11. Ramqvist, L., Hamrin, K., Johanson, G., Fahlman, A., and Nordling, C., J. Phys. Chem. Solids, 30, 1835 (1969).CrossRefGoogle Scholar
12. Konstadinidis, K., Opila, R.. L., Zhang, P., and Allara, D. L. (unpublished results).Google Scholar