Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-28T10:00:27.615Z Has data issue: false hasContentIssue false

Titanium Dioxide Nanotubes Decorated with Nanoparticles for Dye Sensitized Solar Cells

Published online by Cambridge University Press:  03 March 2011

Xuan Pan
Affiliation:
Nano Tech Center and Dept. of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States.
Yong Zhao
Affiliation:
Nano Tech Center and Dept. of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States.
Changhong Chen
Affiliation:
Nano Tech Center and Dept. of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States. Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, China.
Zhaoyang Fan
Affiliation:
Nano Tech Center and Dept. of Electrical and Computer Engineering, Texas Tech University, Lubbock, TX, United States.
Get access

Abstract

The titanium dioxide (TiO2) nanoparticle (NP) structure has higher surface area and dye loading value to increase photon absorption while the nanotube (NT) can suppress the random walk phenomena to enhance carrier collection. In this work, hydrothermal method was utilized to infiltrate the TiO2 nanotube array by TiO2 nanoparticles with the aim of combining the advantages of both nanostructures to improve dye sensitized solar cells (DSSCs) efficiency. Structure morphology, device performance, and electrochemical properties were investigated. SEM observation confirmed that around 10 nm TiO2 nanoparticles uniformly covered the NT wall. TiO2 NT samples at three different lengths: 8 μm, 13 μm and 20 μm, decorated with different amount of nanoparticles were studied to optimize the structure for light absorption and electron transport to achieve high solar conversion efficiency. Electrochemical impedance spectroscopy (EIS) was also employed to investigate the cells’ parameters: electron lifetime (τ), diffusion length (Ln) et al, to gain insight on the device performance. The incident photon conversion efficiency (IPCE) was also reported.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. O’Regan, B.; Grätzel, M. Nature 1991, 353, 737740.Google Scholar
2. Grätzel, M. Nature 2001, 414, 338344.Google Scholar
3. Nazeeruddin, M. K.; Kay, A.; Rodicio, I.; Humpbry-Baker, R.; Miiller, E.; Liska, P.; Vlachopoulos, N.; Grätzel, M. J. Am. Chem. Soc. 1993, 115, 6382.Google Scholar
4. Varghese, O. K.; Gong, D. W.; Paulose, M.; Grimes, C. A.; Dickey, E. C. J. Mater. Res. 2003, 18, 156.Google Scholar
5. Macak, J. M.; Tsuchiya, H.; Ghicov, A.; Yasuda, K.; Hahn, R.; Bauer, S.; Schmuki, P. Current Opinion in Solid State and Materials Science 2007, 11, 318.Google Scholar
6. Alivov, Y.; Kuryatkov, V.; Pandikunta, M.; Rajanna, G.; Johnstone, D.; Bernussi, A.; Nikishin, S.; Fan, Z. Y. Mater. Res. Soc. Symp. Proc. 2009, 1178.Google Scholar
7. Linsebigler, A.L.; Lu, G.; Yates, J. T.; Chem Rev. 1995, 95, 735.Google Scholar
8. Hofmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W.; Chem Rev. 1995, 95, 69.Google Scholar
9. Neale, N. R.; Kopidakis, N.; Lagemaat, J.; Grätzel, M.; Frank, A. J. J. Phys. Chem. B. 2005, 109, 2318323189.Google Scholar
10. Pasquier, A. D.; Stewart, M.; Spitler, T.; Coleman, M. Sol. Energy Mater. Sol. Cells 2009, 93, 4, 528535.Google Scholar
11. Fabregat-Santiago, F.; Bisquert, J.; Garcia-Belmonte, G.; Boschloo, G.; Hagfeldt, A. Sol. Energy Mater. Sol. Cells 2005, 87, 117131.Google Scholar
12. Bisquert, J. J. Phys. Chem. B. 2002, 325333.Google Scholar
13. Murphy, A. B.; Barnes, P. R. F.; Randeniya, L. K.; Plumb, I. C.; Grey, I. E.; Horne, M. D.; Glasscock, J. A. Int. J. Hydrogen Energy 2006, 31, 19992017.Google Scholar