Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T07:12:29.307Z Has data issue: false hasContentIssue false

Toward 20% Efficiency With a-Si // poly-Si Tandem Solar Cell

Published online by Cambridge University Press:  21 February 2011

M. Yoshimi
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
W. Ma
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
T. Horiuchi
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
C. C. Lim
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
S. C. De
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
K. Hattori
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
H. Okamoto
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
Y. Hamakawa
Affiliation:
Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan
Get access

Abstract

A series of experimental investigations has been made on the a-Si // poly-Si tandem solar cell which is one of the most promised candidate of high cost-performance photovoltaic cell, e.g., high efficiency, low cost with almost no light induced degradation. Employing high conductivity with wide optical band gap p type microcrystalline SiC (μ-SiC) as a window material together with a-SiC as an interface buffer layer and also n type μc-Si as a back ohmic contact layer in the poly-Si based bottom cell, the conversion efficiency of 17.2 % has been obtained. Combining an optically transparent a-Si p-i-n cell as a top cell with an optical coupler between the top and the poly-Si bottom cell, a total efficiency of 20.3 % has been obtained so far on the four-terminal stacked mode structure. A systematic technical data for the optimization of cell structure variation on the developed tandem solar cells are presented and further possibility to improving the performance are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Okuda, K., Okamoto, H. and Hamakawa, Y., Jpn. J. Appl. Phys. 22, L605 (1983).CrossRefGoogle Scholar
[2] Matsumoto, Y., Hirata, G., Takakura, H., Okamoto, H. and Hamakawa, Y., J. Appl. Phys. 67, 6538 (1990).Google Scholar
[3] Bird, R. E. and Hulstrom, R. L., Solar Energy 30, 563 (1983).Google Scholar
[4] Fan, J. C. C. and Palm, B. J., Solar Cells, 10, 81 (1983).Google Scholar
[5] Fan, J. C. C. and Palm, B. J., Solar Cells, 11, 247 (1984).Google Scholar
[6] Mitchel, K. M., Technical Digest 1st International PVSEC, Kobe (1984), p. 691.Google Scholar
[7] Hamakawa, Y. and Takakura, H., Energy Conversion and Utilization with High Efficiency (1990) p. 141.Google Scholar
[8] Tsuda, S., Nakamura, N., Watanabe, K., Takahama, T., Nishiwaki, H., Ohnishi, M. and Kuwano, Y., Solar Cells, 9, 25 (1983).CrossRefGoogle Scholar
[9] Hirata, G. A., Nishimoto, T., Okamoto, H. and Hamakawa, Y., IEEE Trans. Electron Devices Letter, 12, 562 (1991).Google Scholar
[10] Hattori, Y., Kruangam, D., Katoh, K., Nitta, Y., Okamoto, H. and Hamakawa, Y., Proc. 19th IEEE PVSC (1987), p. 689.Google Scholar
[11] Hattori, Y., Kruangam, D., Toyama, T., Okamoto, H. and Hamakawa, Y., Appl. Surf. Sci. 33/34, 1276(1987).Google Scholar
[12] Graff, K. and Fischer, H., in Topics in Applied Physics. Solar Energy Conversion, edited by Seraphin, B. O. (Springer-Verlag, Berlin Heidelberg, 1979), Vol. 31, p. 187.Google Scholar
[13] Green, M. A., High Efficiency Silicon Solar Cells (Trans Tech Publications, Switzerland, 1987), p. 228.Google Scholar
[14] Ma, W., Horiuchi, T., Yoshimi, M., Hattori, K., Okamoto, H. and Hamakawa, Y., Proc. 6th International PVSEC, New Delhi (1992), p. 463.Google Scholar
[15] Green, M. A., Technical Digest 5th International PVSEC, Kyoto (1990), p. 603.Google Scholar
[16] Morikawa, H., Itagaki, T., Kawabata, K., Ishihara, T., Sato, K. and Namizaki, H., Technical Digest 5th International PVSEC, Kyoto (1990), p. 215.Google Scholar
[17] Wakisaka, K., Taguchi, M., Sawada, T., Tanaka, M., Matsuyama, T., Matsuoka, T., Tsuda, S., Nakano, S., Kishi, Y. and Kuwano, Y., Proc. 22nd IEEE PVSC, Las Vegas (1991), p. 887.Google Scholar
[18] Zhang-Yang, Xu, Matsumoto, Y., Hanaki, K., Wei, G. P., Okamoto, H. and Hamakawa, Y., Proc. 2nd International PVSEC, Beijing (1986), p. 394.Google Scholar
[19] Takakura, H., Miyagi, K., Kanata, T., Okamoto, H. and Hamakawa, Y., Proc. 4th International PVSEC, kSydney (1989), p. 403.Google Scholar
[20] Mitchell, K., Eberspacher, C., Ermer, J., Pier, D., Proc. 20th IEEE PVSC (1988), p. 1384.Google Scholar