Published online by Cambridge University Press: 16 February 2011
In this paper we develop a model of the defect kinetics in hydrogenated Amorphous silicon (a:Si:H) with the goal of predicting the density of defect states g (E) established by any given light intensity I, for arbitrary times t and temperatures T. While we build on widely accepted expressions for the the rates of light-induced and thermal annealing, we examine in more detail the light induced annealing (LIA) term. The model shows that the LIA process can be described with the thermal annealing term if a suitable reduction to the annealing energy is introduced. This reduction depends on the light intensity such as to suggest a relation to the shift of the electron quasi-Fermi level under illumination.