Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2025-01-03T21:38:16.084Z Has data issue: false hasContentIssue false

Towards Lower Deposition Temperatures of Spray Deposited ZnO Films

Published online by Cambridge University Press:  01 February 2011

Sophie E. Gledhill
Affiliation:
sophie.gledhill@hmi.de, Hahn Meitner Institute, Solar Energy, Glieniker Strasse, 100, Berlin, D-14109, Germany, 0049 30 8062 2868
Nicholas Allsop
Affiliation:
allsop@hmi.de, Hahn Meitner Institute, Solar Energy, Glieniker Strasse, 100, Berlin, D-14109, Germany
Pablo Thier
Affiliation:
pablo.thier@hmi.de, Hahn Meitner Institute, Solar Energy, Glieniker Strasse, 100, Berlin, D-14109, Germany
Christian Camus
Affiliation:
christian.camus@hmi.de, Hahn Meitner Institute, Solar Energy, Glieniker Strasse, 100, Berlin, D-14109, Germany
Martha Lux-Steiner
Affiliation:
lux-steiner@hmi.de, Hahn Meitner Institute, Solar Energy, Glieniker Strasse, 100, Berlin, D-14109, Germany
Christian Herbert Fischer
Affiliation:
fischer@hmi.de, Hahn Meitner Institute, Solar Energy, Glieniker Strasse, 100, Berlin, D-14109, Germany
Get access

Abstract

Highly transparent, conductive ZnO:Al doped films have been deposited by a non-vacuum spray deposition method. At substrate temperatures above 400C we attain resistivites of 5x10-3Ohmcm and free charge carrier concentrations of 10-20cm-3. ZnO film growth and quality are sensitive to the precursor solution. For a non-vacuum process the properties of the films are excellent.

The challenge is to lower the deposition temperature to a maximum of 250C to be useful for Cu(In, Ga)(S, Se)2 solar cells and yet maintain the ZnO film quality and conductivity. As the deposition temperature decreases the resistivity of the ZnO drastically increases yet is conducting enough to be used undoped as the intrinsic ZnO layer. This is particularly relevant as the deposition technique is readily up-scalable to roll to roll coating processes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kessler, J., Norling, J., Lundberg, O., Wennerberg, J., Stolt, L. (Proc. 16th PVSEC Glasgow 2000) p. 775.Google Scholar
2. Ruckh, M., Hariskos, D., Rühle, U., Menner, R., Dimmler, B. and Schock, H.W. (Proc. 25th PVSEC Washington D.C. 1996) pp. 825.Google Scholar
3. Kodas, T.T. and Hampden-Smith, M., Aerosol Processing of Materials, (Wiley-VCH New York 1999) pp. 503512.Google Scholar
4. Ellmer, K., J. Phys. D: Appl. Phys. 34 3091 (2001).Google Scholar
5. Romero, R., Leinen, D., Dalchiele, E.A., Ramos-Barrado, J.R., Martin, F., Thin Solid Films 515, 1942 (2006).Google Scholar
6. Silva, R.F., Zaniquelli, M.E.D., Colloids and Surfaces A, 198-200 551 (2002).Google Scholar
7. Allsop, N.A., Schonmann, A., Muffler, H.J., Bar, M., Lux-Steiner, M.C. and Fischer, C.H., Progress in Photovoltaics 13(7) 607 (2005).Google Scholar
8. Garret, C.S., Massalski, T.B., Structure of Metals, (Pergamon Press Oxford 1980).Google Scholar
9. Klug, H.P., Alexander, L.E., X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials, (2nd Edition Wiley New York 1980).Google Scholar