Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2025-01-04T00:34:24.488Z Has data issue: false hasContentIssue false

Transport Properties of Reconstructed Alumina and Vycor Membranes

Published online by Cambridge University Press:  11 February 2011

M. E. Kainourgiakis
Affiliation:
National Center for Scientific Research “DEMOKRITOS”, 15310 Ag. Paraskevi Attikis, Athens, GREECE.
E. S. Kikkinides
Affiliation:
Chemical Process Engineering Research Institute, CE.R.T.H., P.O. Box 361, Thermi-Thessaloniki 57001, GREECE.
Th. A. Steriotis
Affiliation:
National Center for Scientific Research “DEMOKRITOS”, 15310 Ag. Paraskevi Attikis, Athens, GREECE.
A. K. Stubos
Affiliation:
National Center for Scientific Research “DEMOKRITOS”, 15310 Ag. Paraskevi Attikis, Athens, GREECE.
Get access

Abstract

Aim of the present work is the investigation of the transport properties (Knudsen and molecular diffusivity, permeability) of 3-dimensional binary domains that represent two model mesoporous materials, namely Vycor glass and alumina membrane. A process-based technique producing a random packing of equal spheres is used for the reconstruction of the alumina membrane, while a stochastic reconstruction procedure is employed in the case of Vycor. The comparison between computed and reported transport coefficients confirms that the random sphere pack represents quite well the porous structure of the alumina membrane, while the stochastic reconstruction technique is sufficient for an accurate representation of the porous matrix of Vycor glass.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Joshi, M. Y., “A Class of Stochastic Models for Porous Media”, PhD thesis, Univ. of Kansas (1974).Google Scholar
2. Quiblier, J.A., J. Colloid Interface Sci. 98, 84 (1986).Google Scholar
3. Adler, P.M., Jacquin, C.J. and Quiblier, J.A., Int. J. Multiphase Flow 16, 691 (1990).Google Scholar
4. Adler, P.M., “Porous Media: Geometry and Transports” (Butterworth, 1992).Google Scholar
5. Yeong, C.L.Y. and Torquato, S., Phys. Rev. E 58, 224 (1998).Google Scholar
6. Kikkimdes, E.S. and Burganos, V.N., Phys. Rev. E. 59, 7185 (1999).Google Scholar
7. Bryant, S.L., Cade, C. A. and Mellor, D.W., AAPG Bulletin 77, 1338 (1993).Google Scholar
8. Øren, P.E., Bakke, S., and Arntzen, O.J. SPE Journal 3, 324 (1998).Google Scholar
9. Berryman, J.G., J. Appl. Phys. 57, 2374 (1985).Google Scholar
10. Mitropoulos, A. Ch., Haynes, J.M., Richardson, R.M. and Kanellopoulos, N.K., Phys. Rev. B 52 10035 (1995).Google Scholar
11. Kainourgiakis, M.E., Kikkimdes, E.S. and Stubos, A.K., J. Porous Mater. 9, 141 (2002).Google Scholar
12. Maier, R.S., Kroll, D.M., Davis, H.T. and Bernard, R.S., J. Colloid Interface Sci. 217, 341 (1999).Google Scholar
13. Kainourgiakis, M.E., Kikkinides, E.S., Stubos, A.K. and Kanellopoulos, N.K., J. Chem. Phys. 111, 2735 (1999).Google Scholar
14. Burganos, V.N., J. Chem. Phys. 109, 6772 (1998).Google Scholar
15. Coelho, D., Thovert, J.-F. and Adler, P.M., Phys. Rev. E 55, 1959 (1997).Google Scholar
16. Tomadakis, M.M. and Sotirchos, S.V., AIChE J. 39, 397 (1993).Google Scholar
17. Makri, P.K., Romanos, G., Steriotis, Th., Kanellopoulos, N.K. and Mitropoulos, A. Ch., J. Colloid Interface Sci. 206, 605 (1998).Google Scholar
18. Crossley, P.A., Schwartz, L.M. and Banavar, J.R., Appl. Phys. Lett. 59, 3553 (1991).Google Scholar
19. Kim, I.C. and Torquato, S., J. Chem. Phys. 96, 1498 (1992).Google Scholar
20. Kainourgiakis, M.E., Kikkinides, E.S., Steriotis, Th.A., Stubos, A.K., Tzevelekos, K.P. and Kanellopoulos, N.K., J. Colloid Interface Sci. 231, 158 (2000).Google Scholar
21. Bird, R.B., Stewart, W.E. and Lightfoot, E.N.Transport Phenomena” (John Wiley and Sons, 1960).Google Scholar
22. Lin, M.Y., Abeles, B., Huang, J.S., Stasiewski, H.E., and Zhang, Q., Phys. Rev. B 46, 10701 (1992).Google Scholar