Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-15T01:06:16.347Z Has data issue: false hasContentIssue false

Trap State Photoluminescence of Nanocrystalline and Bulk TiO2,: Implications for Carrier Transport

Published online by Cambridge University Press:  01 February 2011

Jeanne Louise McHale
Affiliation:
jmchale@wsu.edu, Washington State University, Chemistry, Pullman, Washington, United States
Christopher C. Rich
Affiliation:
ccrich@wsu.edu, Washington State University, Chemistry, Pullman, Washington, United States
Fritz J. Knorr
Affiliation:
fknorr@wsu.edu, Washington State University, Chemistry, Pullman, Washington, United States
Get access

Abstract

The visible photoluminescence of nanocrystalline TiO2 is examined in the presence of surface binding agents and as a function of vacuum annealing in order to probe the molecular nature of surface defects. The photoluminesence (PL) of bulk crystals of anatase TiO2 from (101) and (001) planes is also reported in order to test the hypothesis that electron and hole traps are spatially isolated on different crystal planes. We find that a number of hole scavengers are capable of quenching the PL associated with trapped electrons, while the ability of oxygen to quench PL through electron scavenging varies with the nature of the sample. We conclude that hole scavengers exert their influence on the PL through reaction with valence band holes rather than with spatially isolated trapped holes. Scavenging of electrons by O2, on the other hand, depends on adsorption at oxygen vacancies and varies with TiO2 sample.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Serpone, N., Lawless, D., Khairutdinov, R., R. J. Phys. Chem. 99, 16646 (1995).Google Scholar
2 Diebold, U., Surf. Science Rep. 48, 53 (2003).Google Scholar
3 Gregg, B. A., Chen, S.-G., and Ferrere, S. J. Phys. Chem. B 107, 3019 (2003).Google Scholar
4 O'Regan, B. C., Durrant, J. R., Sommeling, P. M., and Bakker, N. J., J. Phys. Chem. C 111, 14001 (2007).Google Scholar
5 Knorr, F. J., Mercado, C. C., McHale, J. L., J. Phys. Chem. C 112, 12786 (2008).Google Scholar
6 Knorr, F. J., Zhang, D., McHale, J. L., Langmuir 23, 8686 (2007).Google Scholar
7 Imanishi, A., Okamura, T., Ohashi, N., Nakamura, R., and Nakato, Y., J. Am. Chem. Soc. 129, 11569 (2007).Google Scholar
8 Deskins, N. A., Kerisit, S., Rosso, K. M., and Dupuis, M., J. Phys. Chem. C 111, 9290 (2007).Google Scholar
9 Murakami, N., , N.; Kurihara, Y., Tsubota, T., and Ohno, T., J. Phys. Chem. C. 113, 3062 (2009).Google Scholar
10 Serpone, N., J. Phys. Chem. B 110, 24287 (2006).Google Scholar
11 Yamazoe, S., Okumura, T., Hitomi, Y., Shishido, T., and Tanaka, T., J. Phys. Chem. C 111, 11077 (2007).Google Scholar
12 Tan, T., Beydoun, D., Amal, R., J. Photochem. Photobiol. A 159, (2003).Google Scholar
13 Dinh, C.-T., Nguyen, T.-D., Kleitz, F., and Do, T.-O., ACS Nano 3, 3787 (2009).Google Scholar
14 Jun, Y.-w., Casula, M. F., Sim, J.-H., Kim, S. Y., Cheon, J., and Alivasatos, A. P., J. Am. Chem. Soc. 125, 15981 (2003).Google Scholar
15 Prairie, M. R., Evans, L. R., Stange, B. M., and Martinez, S. L., Environ. Sci. Tech. 27, 1776 (1993).Google Scholar
16 Park, H., Choi, W., J. Phys. Chem. B 108, 4086 (2004).Google Scholar
17 Diebold, U., Ruzycki, N., Herman, G. S., Selloni, A., Catal. Today 85, 93 (2003).Google Scholar
18 Haque, S. A., Tachibana, Y., Willis, R. L., Moser, J. E., Grätzel, M., Klug, D. R., and Durrant, J. R., J. Phys. Chem. B 104, 538 (2000).Google Scholar