Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-28T21:06:20.114Z Has data issue: false hasContentIssue false

Tridimensional Microstructures of C-SWNT Reinforced Polymer Nanocomposite by Means of a Microfluidic Infiltration Approach

Published online by Cambridge University Press:  01 February 2011

Louis Laberge Lebel
Affiliation:
louis.laberge-lebel@polymtl.ca, Ecole Polytechnique of Montreal, Mechanical Engineering, 2900 blv. Edouart-Montpetit, Montreal, H3T 1J4, Canada
Brahim Aissa
Affiliation:
aissab@emt.inrs.ca, Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, QC, J3X 1S2, Canada
My Ali El Khakani
Affiliation:
elkhakani@emt.inrs.ca, Institut National de la Recherche Scientifique, INRS-Énergie, Matériaux et Télécommunications, 1650 Boulevard Lionel-Boulet, C.P. 1020, Varennes, QC, J3X 1S2, Canada
Daniel Therriault
Affiliation:
daniel.therriault@polymtl.ca, Ecole Polytechnique of Montreal, Mechanical Engineering, 2900 blv. Edouart-Montpetit, Montreal, QC, H3T 1J4, Canada
Get access

Abstract

Three-dimensional (3D) microstructures of single walled carbon nanotube (C-SWNT)/polymer nanocomposite are fabricated by the infiltration of 3D microfluidic networks. The microfluidic network was first fabricated by direct-write assembly which consists of the robotised deposition of fugitive ink filaments on an epoxy substrate to form a 3D microstructured network. After encapsulation of the deposited structure with an epoxy resin, the fugitive ink was removed by heating, resulting in a 3D network of microchannels. This microfluidic network is then infiltrated by a ultraviolet (UV) -curable polymer loaded with C-SWNTs. The C-SWNTs were produced by the UV-laser ablation method, physico-chemically purified and dispersed in a polymer matrix using ultrasonic treatment in dichloromethane. The C-SWNTs were characterized by means of high-resolution scanning electron microscopy and microRaman spectroscopy. The infiltrated nanocomposite (i.e., the C-SWNT reinforced polymer) is then cured under UV exposure and post-cured. The manufactured 3D microstructures were rectangular sandwich beams having an epoxy core and unidirectional nanocomposite fibers placed parallel to the beam axis, on both sides of the core. Flexural mechanical tests were performed on empty, pure resin and nanocomposite microfluidic beams using a dynamic mechanical analyzer. The achieved nanocomposite beams were found to show an increase of 5% in the storage modulus and more than 50% increase in the loss modulus, under 30°C compared to the pure resin beams. The nanocomposite infiltration of microfluidic networks is shown to be a promising approach to achieve 3D microstructures of reinforced nanocomposites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bethune, D. S., Kiang, C. H., Vries, M. S. de, Gorman, G., Savoy, R., Vazquez, J., and Beyers, R., Nature 363 (6430), 605 (1993).Google Scholar
2. Iijima, S. and Ichihashi, T., Nature 364 (6439), 737 (1993).Google Scholar
3. Qian, D., Wagner, G. J., Liu, W. K., Yu, M.-F., and Ruoff, R. S., Appl Mech Rev 55 (6), 495532 (2002).Google Scholar
4. Tans, S. J., Devoret, M. H., Dai, H., Thess, A., Smalley, R. E., Georliga, L. J., and Dekker, C., Nature 386 (6624), 474–7 (1997).Google Scholar
5. Thostenson, E. T. and Chou, T.-W., Adv Mater 18 (21), 28372841 (2006).Google Scholar
6. Sahoo, N. G., Jung, Y. C., Yoo, H. J., and Cho, J. W., Compos Sci Technol 67 (9), 19201929 (2007).Google Scholar
7. Sandler, J. K. W., Kirk, J. E., Kinloch, I. A., Shaffer, M. S. P., and Windle, A. H., Polymer 44 (19), 5893–9 (2003).Google Scholar
8. Thostenson, E. T. and Chou, T.-W., J Phys D Appl Phys 35 (16), 7780 (2002).Google Scholar
9. Kimura, T., Ago, H., Tobita, M., Ohshima, S., Kyotani, M., and Yumura, M., Adv Mater 14 (19), 13801383 (2002).Google Scholar
10. Park, C., Wilkinson, J., Banda, S., Ounaies, Z., Wise, K. E., Sauti, G., Lillehei, P. T., and Harrison, J. S., J Polym Sci Pol Phys 44 (12), 17511762 (2006).Google Scholar
11. Sandler, J. K. W., Pegel, S., Cadek, M., Gojny, F., Es, M. Van, Lohmar, J., Blau, W. J., Schulte, K., Windle, A. H., and Shaffer, M. S. P., Polymer 45 (6), 20012015 (2004).Google Scholar
12. Ko, F., Gogotsi, Y., Ali, A., Naguib, N., Ye, H., Yang, G., Li, C., and Willis, P., Adv Mater 15 (14), 11611165 (2003).Google Scholar
13. Therriault, D., White, S. R., and Lewis, J. A., Nat Mater 2 (4), 265271 (2003).Google Scholar
14. Therriault, D., Shepherd, R. F., White, S. R., and Lewis, J. A., Adv Mater 17 (4), 395399 (2005).Google Scholar
15. Braidy, N., Khakani, M. A. El, and Botton, G. A., Chem Phys Lett 354 (1-2), 8892 (2002).Google Scholar
16. Du, F., Scogna, R. C., Zhou, W., Brand, S., Fischer, J. E., and Winey, K. I., Macromolecules 37 (24), 90489055 (2004).Google Scholar
17. Norland, T., Norland Products Inc. (private communication)Google Scholar