Published online by Cambridge University Press: 15 February 2011
A potentiometric method for the measurement of ultimate strain of thin films is presented. In this method, an electric potential is applied between two electrodes located one on each side of the thin film under investigation. The electrodes are immersed in an electrolytic solution. The thin film acts as an electrical current barrier. To determine the ultimate strain, a controlled load is applied to the film. Cracking of the film causes a sharp rise in the current from an initial small leakage value. The applied load at the onset of cracking is used to calculate the ultimate strain.
we have previously demonstrated the feasibility of the method for thin silicon nitride films deposited on aluminum strips. The method is very sensitive and can detect cracks too small to be observed with a microscope. We discuss extension of the method to the measurement of the ultimate strain of micromachined membranes. The load is applied by pressurizing one side of the membrane. Micromachined structures are used to determine residual stresses.