Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T01:14:30.731Z Has data issue: false hasContentIssue false

Ultra Low-k Materials Based on Self-Assembled Organic Polymers

Published online by Cambridge University Press:  29 July 2011

M. Pantouvaki
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
L. Zhao
Affiliation:
Intel Assignee at Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
C. Huffman
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
K. Vanstreels
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
I. Ciofi
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
G. Vereecke
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
T. Conard
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
Y. Ono
Affiliation:
Sumitomo Bakelite Co, Ltd, Yokohama, Kanagawa, 245-0052, Japan.
M. Nakajima
Affiliation:
Sumitomo Bakelite Co, Ltd, Yokohama, Kanagawa, 245-0052, Japan.
K. Nakatani
Affiliation:
Sumitomo Bakelite Co, Ltd, Yokohama, Kanagawa, 245-0052, Japan.
G. P. Beyer
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
M. R. Baklanov
Affiliation:
Imec, Kapeldreef 75, B-3001 Leuven, Belgium.
Get access

Abstract

The material properties of two ultra low-k organic polymers are characterized for copper interconnect integration. The k-values are 2.2-2.3 for both. Compared to OSG materials of similar k-values, these polymers have lower porosity and smaller pore size, achieved using selfassembled chemistry. Both materials demonstrate excellent resistance to plasma damage: no water uptake was detected after exposure to selected etching plasmas. This characteristic, combined with the small pore size and low porosity, results in the successful integration of the organic low-ks in 80 nm spacing with no significant increase in the integrated k-values.

It is found that higher open porosity in polymer A is accompanied by higher leakage current, which is not however linked to lower dielectric breakdown lifetimes.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Maex, K., Baklanov, M. R., Shamiryan, D., Iacopi, F., Brongersma, S. H., Yanovitskaya, Z. S., J. Appl. Phys. 93, 8793 (2003).Google Scholar
2. Liu, H., Widodo, J., Liew, S. L., Wang, Z. H., Wang, Y. H., Lin, B. F., Wu, L. Z., Seet, C. S., Lu, W., Low, C. H., Liu, W. P., Zhou, M. S., and Hsia, L. C., IEEE International Interconnect Technology Conference (IIITC), 258 (2009).Google Scholar
3. Marsik, P., Verdonck, P., De Roest, D., and Baklanov, M. R., Thin Solid Films, 518, 4266 (2010).Google Scholar
4. Wang, P.-I., Juneja, J. S., Ou, Y., Lu, T.-M., and Spencer, G. S., J. Electrochem. Soc. 155,H53 (2008).Google Scholar
5. Kikkawa, T., Kuroki, S., Sakamoto, S., Kohmura, K., Tanaka, H., and Hata, N., J Electrochem. Soc., 152, G560 (2005).Google Scholar
6. Baklanov, M. R., Zhao, L., Van Besien, E., Pantouvaki, M., Microelectronic Engineering, 88, 990 (2011).Google Scholar
7. Pantouvaki, M., Huffman, C., Zhao, L., Heylen, N., Ono, Y., Nakajima, M., Nakatani, K., Beyer, G.P., and Baklanov, M. R., Jpn. J. Appl. Phys., 50, 04DB01 (2011).Google Scholar
8. Ciofi, I., Baklanov, M. R., Tokei, Zs., Beyer, G. P., Microelectronic Engineering, 87, 2391 (2010).Google Scholar
9. Baklanov, M. R., Mogilnikov, K. P., Polovinkin, V. G., and Dultsev, F. N., J. Vac. Sci. Technol. B, 18, 1385 (2000).Google Scholar
10. Vanstreels, K., Pantouvaki, M., Ferchichi, A., Verdonck, P., Conard, T., Ono, Y., Matsutani, M., Nakatani, K., and Baklanov, M. R., J. Appl. Phys., 109, 074301 (2011).Google Scholar
11. Zhao, L., Tokei, Zs., Gischia, G. G., Pantouvaki, M., Croes, K., and Beyer, G. P., 47th Annual IEEE International Reliability Physics Symposium (IRPS), 848 (2009).Google Scholar
12. Li, H., Lin, Y., Tsui, T. Y., and Vlassak, J. J., J. Mater. Res., 24, 107 (2009).Google Scholar
13. Fuard, D., Joubert, O., Vallier, L., Assous, M., Berruyer, P., and Blanc, R., J. Vac. Sci. Technol. B, 19, 2223 (2001).Google Scholar
14. Nagai, H., Hiramatsu, M., Hori, M., and Goto, T., J. Appl. Phys., 94, 1362 (2003).Google Scholar
15. Tatsumi, T., Applied, Surface Science, 253, 6716 (2007).Google Scholar
16. Vereecke, G., Kondoh, E., Richardson, P., Maex, K., and Heyns, M. M., IEEE Transactions on Semiconductor Manufacturing, 13, 315 (2000).Google Scholar
17. Vereecke, B., Pantouvaki, M., Ciofi, I., Beyer, G. P., and Tokei, Zs., Microelectronic Engineering, 88, 651 (2011).Google Scholar