Article contents
Ultrafast Deposition of Crystalline Si Films Using a High Density Microwave Plasma
Published online by Cambridge University Press: 01 February 2011
Abstract
A multi-pressure microwave plasma source is developed and is applied for the fast deposition of crystalline silicon films. In this paper, the plasma source is diagnosed firstly. Electron density, electron temperature and discharge gas temperature of the plasmas generated in ambient air are studied using optical emission spectroscopy (OES) method. By using the high density microwave plasma source, depositions of crystalline silicon films from SiH4+He mixture at reduced pressure conditions are investigated systematically. After optimizing the film deposition conditions, highly crystallized Si films are deposited at a rate higher than 700 nm/s. We also find that the deposited films are fully crystallized and crystalline structure of the deposited film evolves along the film growth direction, i.e. large grains in surface region while small grains in the bottom region of the film. Based on the observed results, a possible mechanism, the annealing-assisted plasma-enhanced chemical vapor deposition, is proposed to describe the film growth process.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2010
References
- 1
- Cited by