Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-10T08:37:32.728Z Has data issue: false hasContentIssue false

Ultrafast Laser Deposition of Semiconductor Nanowires

Published online by Cambridge University Press:  01 February 2011

Samuel S. Mao*
Affiliation:
Lawrence Berkeley National Laboratory, University of California at Berkeley Berkeley, CA 94720, U.S.A., Email: ssmao@lbl.gov Department of Mechanical Engineering, University of California at Berkeley Berkeley, CA 94720, U.S.A., Email: ssmao@lbl.gov
Get access

Abstract

Pulsed laser deposition (PLD) has been applied to fabricate thin films of a variety of materials. However, formation of micron-sized particulates during conventional nanosecond laser-based deposition process makes it unsuitable for growing high quality nanoscale materials. Owing to a nonequilibrium non-thermal ablation mechanism and characterized by their short pulse duration compared to thermal diffusion time (tens of picoseconds), ultrafast laser pulses are able to produce particulate-free precursor vapor for nanoscale material deposition. In this article, the foundation of non-thermal ultrafast laser ablation will be examined by both experimental and theoretical investigations. Ultrafast laser-induced high-density electron ejection and subsequent build -up of a strong electric field above the target material were observed. Mass spectrometry and electron microscopy measurements confirmed the particulate-free nature of ultrafast laser ablation. Using ultrafast laser-based particulate-free PLD approach, high quality ZnO nanowires were grown on sapphire and silicon substrates. The optical properties of ZnO nanowires, including the external and internal quantum efficiency of nanowire nanolasers, were experimentally determined. In addition, a nanowire UV photodiode based on p−Si/n−ZnO nanowires was successfully fabricated. This first nanowire photodiode device shows good photocurrent characteristics when operated under reverse bias.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Chrisey, D. B. and Hubler, G. K., Pulsed Laser Deposition of Thin Films, Wiley, New York, 1994.Google Scholar
2. Sankur, H., Gunning, W. J., DeNatale, J., and Flintoff, J. F., J. Appl. Phys. 65, 2475 (1989).Google Scholar
3. Dijkkamp, D., Venkatesan, T., Wu, X. D., Shaheen, S. A., Jisrawi, N., Min-Lee, Y. H., McLean, W. L., and Croft, M., Appl. Phys. Lett. 51, 619 (1987).Google Scholar
4. Tabata, H., Tanaka, H., and Kawai, T., Appl. Phys. Lett. 65, 1970 (1994).Google Scholar
5. Venimadhav, A., Hegde, M. S., Rawat, R., Das, I., and El Marssi, M., J. Alloy. Comp. 326, 270 (2001).Google Scholar
6. Kruer, W. L., The Physics of Laser Plasma Interactions, Addison-Wesley, New York, 1988.Google Scholar
7. Lu, Q., Mao, S. S., Mao, X., and Russo, R. E., Appl. Phys. Lett. 80, 3072 (2002).Google Scholar
8. Russo, R. E., Mao, X., Gonzalez, J. J., and Mao, S. S., J. Anal. At. Spectrom. 17, 1072 (2002).Google Scholar
9. Millon, E., Albert, O., Loulergue, J. C., Etchepare, J., Hulin, D., Seiler, W., Perrière, J., J. Appl. Phys. 88, 6937 (2000).Google Scholar
10. Okoshi, M., Higashikawa, K., Hanabusa, M., Appl. Surf. Sci. 145, 424 (2000).Google Scholar
11. Wagner, R. S. and Ellis, W. C., Appl. Phys. Lett. 4, 89 (1964).Google Scholar
12. Mao, S. S., Int. J. Nanotech. 1, 42 (2004).Google Scholar
13. Fons, P., Iwata, K., Yamada, A., Matsubara, K., Niki, S., Nakahara, K., Tanabe, T., and Takasu, H., Appl. Phys. Lett. 77, 1801 (2000).Google Scholar
14. Gudiksen, M. S. and Lieber, C. M., J. Am. Chem. Soc. 122, 8801 (2000).Google Scholar
15. Huang, M., Mao, S. S., Feick, H., Yan, H., Wu, Y., Kind, H., Weber, E. R., Russo, R. E., and Yang, P., Science 292, 1897 (2001).Google Scholar
16. Zhang, Y., Russo, R. E., and Mao, S. S., submitted (2005).Google Scholar
17. Sze, S. M.. Semiconductor devices, physics and technology, 2nd ed., John Wiley & Son, New York, 2002.Google Scholar
18. Jeong, I.-S., Kim, J. H., and Im, S., Appl. Phys. Lett. 83, 2946 (2003).Google Scholar