Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-14T05:32:36.932Z Has data issue: false hasContentIssue false

Ultrafast Laser Processing of Hybrid Micro- and Nano-structures in Silicate Glasses

Published online by Cambridge University Press:  23 June 2011

Pavel Mardilovich
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, DavisOne Shields Ave, Davis, CA 95616, U.S.A.
Luke Fletcher
Affiliation:
Department of Applied Science, University of California, Davis One Shields Ave, Davis, CA 95616, U.S.A.
Neil Troy
Affiliation:
Department of Applied Science, University of California, Davis One Shields Ave, Davis, CA 95616, U.S.A.
Lihmei Yang
Affiliation:
PolarOnyx Inc., 2526 Qume Drive, Suites 17 & 18, San Jose, CA 95131
Huan Huang
Affiliation:
PolarOnyx Inc., 2526 Qume Drive, Suites 17 & 18, San Jose, CA 95131
Subhash Risbud
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, DavisOne Shields Ave, Davis, CA 95616, U.S.A.
Denise M. Krol
Affiliation:
Department of Applied Science, University of California, Davis One Shields Ave, Davis, CA 95616, U.S.A.
Get access

Abstract

This study describes the fabrication of hybrid micro- and nanostructures of semiconductor nanocrystals arranged in microscopic lines inside of a borosilicate glass doped with CdSxSe1-x. This was performed using a two step process of (1) ultrafast laser modification and (2) heat treatment. The glass was photomodified using focused sub-picosecond infra-red pulses with 1 MHz repetition rate to create linear domains with local compositional variations. Heat treating the sample at temperatures near glass transition preferentially precipitated semiconductor in the modified regions, as evidenced by confocal fluorescence microscopy. The optical properties of the precipitated nanocrystals varied with heat treatment duration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Della Valle, G., Osellame, R. and Laporta, P., Journal of Optics A: Pure and Applied Optics 11, 1 (2009).Google Scholar
2. Schaffer, C.B., Brodeur, A., Mazur, E., Measurement Science and Technology 12, 1784 (2001).Google Scholar
3. Davis, K.M., Miura, K., Sugimoto, N. and Hirao, K., Optics Letters 21, pp. 1729 (1996).Google Scholar
4. Chan, J.W., Huser, T., Risbud, S. and Krol, D.M., Applied Physics A 76, 367 (2003).Google Scholar
5. Nolte, S., Will, M., Burghoff, J and Tennermann, A., Applied Physics A 77, 109 (2003).Google Scholar
6. Streltsov, A. M. and Borelli, N. F., Optics Letters 26, 42 (2001).Google Scholar
7. Osellame, R., Taccheo, S., Cerullo, G., Marangoni, M., Polli, D., Ramponi, R., Laporta, P. and De Silvestri, S., Electronic Letters 38 964 (2002).Google Scholar
8. Osellame, R., Della Valle, G., Chiodo, N., Taccheo, S., Laporta, P., Svelto, O. and Gerullo, G., Applied Physics A 93, 17 (2008).Google Scholar
9. Auxier, J.M., Schulzgen, A, Morell, M.M., West, B.R., Honkanen, S., Sen, S., Borelli, N.F. and Peyghambarian, N., Fiber Lasers II: Technology, Systems and Applications, Edited by Durvasula, L.N., Brown, A.J.W. and Nilsson, J, Proceedings of SPIE 5709, 249 (2005).Google Scholar
10. Liu, L.-C. and Risbud, S., Journal of Applied Physics 68, 28 (1990).Google Scholar
11. Ekimov, A., Journal of Luminescence 70, 1 (1996).Google Scholar
12. Borelli, N.F., Hall, D.W., Holland, H.J. and Smith, D.W., Journal of Applied Physics 61, 5398 (1987).Google Scholar
13. Liu, Y, Shimizu, M., Zhu, B., Dai, Y., Quian, B., Qui, J., Shimotsuma, Y., Miura, K. and Hirao, K., Optics Letters 34, 136 (2009).Google Scholar
14. Borom, M.P. and Hanneman, R.E., Journa of Applied Physics 38, 2406 (1967).Google Scholar
15. Salimina, A., Vallee, R, Chin, S.L., Optics Communications 256, 422 (2005).Google Scholar