Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T01:05:17.585Z Has data issue: false hasContentIssue false

Ultrasonic spray assisted Mist-CVD method for high-quality crystalline and amorphous oxide semiconductors growth

Published online by Cambridge University Press:  15 March 2011

Hiroyuki Nishinaka
Affiliation:
Dept. Electronic Science and Engineering, Kyoto University, Katsura, Kyoto, 615-8520, Japan
Yudai Kamada
Affiliation:
Dept. Electronic Science and Engineering, Kyoto University, Katsura, Kyoto, 615-8520, Japan
Keiji Kiba
Affiliation:
Dept. Electronic Science and Engineering, Kyoto University, Katsura, Kyoto, 615-8520, Japan
Naoki Kameyama
Affiliation:
Dept. Electronic Science and Engineering, Kyoto University, Katsura, Kyoto, 615-8520, Japan
Shizuo Fujita
Affiliation:
Dept. Electronic Science and Engineering, Kyoto University, Katsura, Kyoto, 615-8520, Japan
Get access

Abstract

The growth of high-quality crystalline ZnO thin films on ZnO bulk substrates and of amorphous In-Ga-O and Ga-Al-O thin films has been demonstrated by using the solution-based cost-effective and environmental friendly ultrasonic spray assisted mist-CVD method. The homoepitaxial ZnO thin films with atomically flat surfaces were successfully grown on Zn-polar ZnO substrates via a step-flow growth mode, in spite of different miscut angles of the substrate, at the furnace temperature of 1000°C. The compositions and optical absorption edges of the amorphous In-Ga-O and Ga-Al-O thin films were controlled by means of the concentration ratios of [In]/([In]+[Ga]) and [Al]/([Al]+[Ga]) in the starting solutions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tsukazaki, A., Ohtomo, A., Onuma, T., Ohtani, M., Makino, T., Sumiya, M., Ohtani, K., Chichibu, S. F., Fuke, S., Segawa, Y., Ohno, H., Koinuma, H., and Kawasaki, M., Nature Mater. 4, 42 (2005).Google Scholar
2. Ryu, Y. R., Lubguban, J. A., Lee, T. S., White, H. W., Jeong, T.S., Youn, C. J., and Kim, B. J., Appl. Phys. Lett. 90, 131115 (2007).Google Scholar
3. Iwata, K., Sakemi, T., Yamada, A., Fons, P., Awai, K., Yamamoto, T., Matsubara, M., Tampo, H., and Niki, S., Thin Solid Films 445, 274 (2003).Google Scholar
4. Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M., and Hosono, H., Nature 432, 488 (2004).Google Scholar
5. Nishinaka, H. and Fujita, S., J. Cryst. Growth 310, 5007 (2008).Google Scholar
6. Shinohara, D. and Fujita, S., Jpn. J. Appl. Phys. 47, 7311 (2008).Google Scholar
7. Nishinaka, H., Kawaharamura, T., and Fujita, S., J. Korean Phys. Soc. 53, 3025 (2008).Google Scholar
8. Nishinaka, H., Kawaharamura, T., and Fujita, S., Jpn. J. Appl. Phys. 46, 6811 (2007).Google Scholar
9. Kawaharamura, T., Nishinaka, H., Kamada, Y., Masuda, Y., Lu, J.-G., and Fujita, S., J. Korean Phys. Soc. 53, 2976 (2008).Google Scholar
10. Nakahara, K., Tanabe, T., Takasu, H., Fons, P., Iwata, K., Yamada, A., Matsubara, K., Hunger, R., and Niki, S., Jpn. J. Appl. Phys. 40, 250 (2001).Google Scholar
11. Miyamoto, K., Sano, M., Kato, H., and Yao, T., J. Cryst. Growth 265, 34 (2004).Google Scholar
12. Ito, M., Kon, M., Miyazaki, C., Ikeda, N., Ishizaki, M., Matsubara, R., Ugajin, Y., and Sekine, N., phys. Stat. sol. (a) 205, 1885 (2008).Google Scholar