Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-14T17:21:17.420Z Has data issue: false hasContentIssue false

Understanding of Lithium Insertion into λ-MnO2 Compounds

Published online by Cambridge University Press:  10 February 2011

S. Sarciaux
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, UMR CNRS-University of Nantes n°6502. 2, rue de la Houssinière - BP 32229 – 44322 Nantes Cedex 3, France
A. Le Gal La Salle
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, UMR CNRS-University of Nantes n°6502. 2, rue de la Houssinière - BP 32229 – 44322 Nantes Cedex 3, France
A. Verbaere
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, UMR CNRS-University of Nantes n°6502. 2, rue de la Houssinière - BP 32229 – 44322 Nantes Cedex 3, France
Y Piffard
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, UMR CNRS-University of Nantes n°6502. 2, rue de la Houssinière - BP 32229 – 44322 Nantes Cedex 3, France
D. Guyomard
Affiliation:
Institut des Matériaux de Nantes, Laboratoire de Chimie des Solides, UMR CNRS-University of Nantes n°6502. 2, rue de la Houssinière - BP 32229 – 44322 Nantes Cedex 3, France
Get access

Abstract

A large variety of EMD and HTMD samples with various oxygen and water contents and various structural parameters Pr and Mt has been prepared. We show that the physico-chemical and structural parameters of the λ-MnO2 compounds are related to the synthesis conditions. New compounds were obtained with unusual amounts of intergrowth and twinning defects.

The Li insertion study focuses on a comprehensive investigation of the relationships between the material characteristics of the samples and their Li insertion behavior, and on the structural characterization of selected compounds after cycling. The oxygen content drastically affects the shape of the discharge curve after the first cycle and the total reversible capacity. The amount of structural water has an influence on the transformation kinetics of the starting phase. For optimized oxygen content (y= 2 in MnOY), the intrinsic reversible Li insertion capacity is maximum when the amount of microtwinning defects is minimum and when the structure is either mostly Ramsdellite or faulted Pyrolusite. Results show that, upon cycling, the λ-MnO2 structure seems to evoluate towards less Pyrolusite defects together with the apparition of new kinds of defects.

This work shows that λ-MnO2, compounds could be good candidates for the cathode application of Li-metal rechargeable batteries, provided that the physico-chemical and structural parameters of the starting compound are well chosen.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Guyomard, D., in “New Trends in Electrochemical Technology: Energy Storage Systems for Electronics”, (Editors: Osaka, T. & Datta, M., Chapter C1-9, 1999), acceptedGoogle Scholar
2. Koksbang, R., Olsen, I.I. and Shackle, D., Solid State Ionics 69, 320 (1994).Google Scholar
3. Gauthier, M., Belanger, A., Bouchard, P., Kapfer, B., Ricard, S., Vassort, G., Armand, M., Sanchez, J.Y and Krause, L., J. Power Sources 54, 163 (1995).Google Scholar
4. Baudry, P, Lascaud, S., Majastre, H. and Bloch, D., J. Power Sources 68, 432 (1997).Google Scholar
5. Chabre, Y and Pannetier, J., Prog. Solid St. Chem. 23, 1 (1995).Google Scholar
6. Nohma, T., Saito, T., Furukawa, N. and Ikeda, H., J. Power Sources 26, 389 (1989).Google Scholar
7. Rossouw, M.H., Kock, A. De, Picciotto, L.A. De and Thackeray, M.M., Mat. Res. Bull. 25, 173 (1990).Google Scholar
8. Dan, P., Mengeritski, E., Geronov, Y., Aurbach, D. and Weisman, I., J. Power Sources 54, 143 (1995).Google Scholar
9. Ohzuku, T., Kitagawa, M. and Hirai, T., J. Electrochem. Soc. 137, 40 (1990).Google Scholar
10. Li, L. and Pistoia, G., Solid State Ionics 47, 231 (1991).Google Scholar
11. Kurimoto, H., Suzuoka, K., Murakami, T., Xia, Y, Nakamura, H. and Yoshio, M., J. Electro-chem. Soc 142, 2156 (1995).Google Scholar
12. Shao-Horn, Y, Hackney, S.A. and Cornilsen, B.C., J. Electrochem.Soc. 144, 3147 (1997).Google Scholar
13. Levi, E., Zinigrad, E., Teller, H., Levi, M.D., Aurbach, D., Mengeritski, E., Elster, E., Dan, P, Granot, E. and Yamin, H., J. Electrochem. Soc. 144, 4133 (1997).Google Scholar
14. Salle, A. Le Gal La, Sarciaux, S., Verbaere, A., Piffard, Y and Guyomard, D., J. Electrochem. Soc., submitted.Google Scholar
15. Cowley, J. M., Diffraction Physics, (New-York and London, DIFFAX V1.76, 1990).Google Scholar
16. Ruetschi, P, J. Electrochem. Soc. 131, 2737 (1984).Google Scholar
17. Wolff, PM. De, Acta Crystallog. 12, 341 (1959).Google Scholar
18. Amarilla, J.M. and Poinsignon, C., to be published.Google Scholar
19. Verbaere, A., Sarciaux, S., Salle, A. Le Gal La, Guyomard, D. and Piffard, Y, J. Solid State Chem., to be published.Google Scholar
20. Rethinaraj, J. Prabhakar and Visvanathan, S., J. Power Sources 42, 335 (1993).Google Scholar
21. Andersen, T. N., Progress in Batteries and Battery Materials 11, 105 (1992).Google Scholar
22. Sarciaux, S., Salle, A. Le Gal La, Verbaere, A., Piffard, Y and Guyomard, D., J. Power Sources, accepted.Google Scholar
23. David, W.I.E, Thackeray, M.M., Bruce, P.G. and Goodenough, J.B., Mat. Res. Bull. 19, 99 (1984).Google Scholar
24. Thackeray, M.M., Rossouw, M.H., Gummow, R.J., Liles, D.C., Pearce, K., Kock, A. De, David, W.I.E and Hull, S., Electrochim. Acta 38, 1259 (1993).Google Scholar
25. McLean, L.A.H., Amarilla, J.M., Poinsignon, C., Cras, F. Le and Strobel, P, J. Mat. Chem. 5, 1183 (1995).Google Scholar
26. Sarciaux, S., Salle, A. Le Gal La, Verbaere, A., Piffard, Y and Guyomard, D., J. Electrochem. Soc., to be published.Google Scholar