Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:11:17.187Z Has data issue: false hasContentIssue false

Universal Scaled Strength Behaviour for Micropillars and Nanoporous Materials

Published online by Cambridge University Press:  31 January 2011

Brian Derby
Affiliation:
brian.derby@manchester.ac.uk, Materials Science Centre, The University of Manchester, School of Materials, Manchester, United Kingdom
Rui Dou
Affiliation:
rui.dou@postgrad.manchester.ac.ukruidou6@hotmail.com, Materials Science Centre, The University of Manchester, School of Materials, Manchester, United Kingdom
Get access

Abstract

The strength of submicron FCC structure metal columns, σ, fabricated by FIB machining or electrodeposition, shows a strong correlation with specimen diameter, d, with σ/μ = A(d/b)−0.63, where A is a constant, μ is the single crystal shear modulus resolved onto the slip system and b is the Burgers' vector. The strength of BCC structure metals does not show such a well defined correlation with size across different metals but the data occupies the same region of parameter space as with the FCC metals. Nanoporous gold specimens show a similar size-correlated behaviour but with an exponent of −0.5. This may indicate different mechanisms operating in each case.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Uchic, M.D., Dimiduk, D.M., Florando, J.N. & Nix, W.D., Science 305, 986989 (2004).10.1126/science.1098993Google Scholar
2. Greer, J.R., Oliver, W.C. & Nix, W.D., Acta Mater. 53, 18211830 (2005).10.1016/j.actamat.2004.12.031Google Scholar
3. Volkert, C.A. & Lilleodden, E.T., Philos. Mag. 86, 55675579 (2006).10.1080/14786430600567739Google Scholar
4. Maass, R., Grolimund, D., Van Petegem, S., Willimann, M., Jensen, M., Van Swygenhoven, H., Lehnert, T., Gijs, M.A.M., Volkert, C.A., Lilleodden, E.T. & Schwaiger, R., Appl. Phys. Lett. 89, 151905 (2006).Google Scholar
5. Dou, R. & Derby, B., Scripta Mater. 59, 151154 (2008).10.1016/j.scriptamat.2008.02.046Google Scholar
6. Biener, J., Hodge, A.M., Hamza, A.V., Hsiung, L.M. & Satcher, J.H., Nanoporous J. Appl. Phys. 97, 024301 (20050.10.1063/1.1832742Google Scholar
7. Volkert, C.A., Lilleodden, E.T., Kramer, D. & Weissmuller, J., Appl. Phys. Lett. 89, 061920 (2006).10.1063/1.2240109Google Scholar
8. Lee, D., Wei, X., Chen, X., Zhao, M., Jun, S.C., Hone, J., Herbert, E.G., Oliver, W.C. & Kysar, J.W., Scripta Mater. 56, 437440 (2007).10.1016/j.scriptamat.2006.08.069Google Scholar
9. Hakamada, M., & Mabuchi, M., Scripta Mater. 56, 10031006 (2007).10.1016/j.scriptamat.2007.01.046Google Scholar
10. Hodge, A.M., Biener, J., Hayes, J.R., Bythrow, P.M., Volkert, C.A. & Hamza, A.V., Acta Mater. 55, 13431349 (2007).10.1016/j.actamat.2006.09.038Google Scholar
11. Uchic, M.D., Shade, P.A. and Dimiduk, D.M. JOM, 61(3), 36 (2009).10.1007/s11837-009-0038-2Google Scholar
12. Dou, R., & Derby, B., Scripta Mater. 61, 524527 (2009).10.1016/j.scriptamat.2009.05.012Google Scholar
13. Kiener, D., Motz, C., Schöberl, T. Jenko, M. & Dehm, G., Adv. Eng. Mater. 8, 11191125 (2006).10.1002/adem.200600129Google Scholar
14. Greer, J.R. & Nix, W. D., Phys. Rev. B 73, 245410 (2006).10.1103/PhysRevB.73.245410Google Scholar
15. Dimiduk, D.M., Uchic, M.D. & Parthasarathy, T.A. Acta Mater. 53, 40654077 (2005).10.1016/j.actamat.2005.05.023Google Scholar
16. Frick, C.P., Clark, B.G., Orso, S., Schneider, A.S., Arzt, E., Mater. Sci. Eng. A 489, 319329 (2008).10.1016/j.msea.2007.12.038Google Scholar
17. Kiener, D., C, Motz., & Dehm, G., et al, J. Mater. Sci. 43, 25032506, (2008).10.1007/s10853-008-2531-3Google Scholar
18. Ng, K.S. & Ngan, A.H.W Acta Mater. 56, 17121720 (2008).10.1016/j.actamat.2007.12.016Google Scholar
19. Kim, J.Y., and Greer, J.R., Appl. Phys. Lett. 93, 101916 (2008).10.1063/1.2979684Google Scholar
20. Bei, H., Shim, S., George, E.P., Miller, M.K., Herbert, E.G. & Pharr, G.M., Scripta Mater. 57, 397400 (2007).10.1016/j.scriptamat.2007.05.010Google Scholar
21. Michler, J., Wasmer, K., Meier, S., and Östlunda, F., Appl. Phys. Lett. 90, 043123 (2007).10.1063/1.2432277Google Scholar
22. Shan, Z.W., Mishra, R.K., Asif, S.A.S., Warren, O.L. & Minor, A.M., Nature Mater 7, 115119 (2008).10.1038/nmat2085Google Scholar
23. Rabkin, E., Nam, H.S. & Srolovitz, D.J., Acta Mater. 55, 20852099 (2007).10.1016/j.actamat.2006.10.058Google Scholar
24. Rabkin, E & Srolovitz, D.J., Nano Lett. 7, 101107 (2007).10.1021/nl0622350Google Scholar
25. Schneider, A.S., Clark, B.G., Frick, C.P., Gruber, P.A. & Arzt, E., Mater. Sci. Eng. A 508, 241246 (2009).10.1016/j.msea.2009.01.011Google Scholar
26. Kim, J.-Y., Jang, D., & Greer, J.R., Scripta Mater. 61, 300303 (2009).10.1016/j.scriptamat.2009.04.012Google Scholar
27. Gibson, L.J., & Ashby, M.F., Proc. Royal Soc. Lon. A 382A, 4359 (1982).10.1098/rspa.1982.0088Google Scholar
28. Fleck, N.A., Muller, G.M., Ashby, M.F., Hutchinson, J.W., Acta Metall. Mater. 42, 475487 (1994).10.1016/0956-7151(94)90502-9Google Scholar
29. Stolken, J.S., Evans, A.G., Acta Mater. 46, 51095115 (1998).10.1016/S1359-6454(98)00153-0Google Scholar