Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-28T09:51:53.670Z Has data issue: false hasContentIssue false

The Usage of Industrialwaste Materials for the Productionof Special Cements and Binders

Published online by Cambridge University Press:  21 February 2011

Herbert PÖllmann
Affiliation:
Department of Mineralogy/Geochemistry, University of Halle, Domstr. 5, 06108 Halle
JÜrgen Neubauer
Affiliation:
Institute Erlangen, Wüifrath, /, Germany
Hubert Motzet
Affiliation:
Rhein. Kalksteinwerke, Wüifrath, /, Germany
Get access

Abstract

By mixing various industrial wastes, as garbage combustion ashes, bottom ashes, fluidized bed ashes, lignite power station ashes, fume purification sulfates and sulfites and lime it is possible to produce cements and binders on the basis of alinite, calcium sulfoaluminate and belite depending on the chemical variety of used wastes.

The fabrication process for these cements was studied by laboratory experiments and the different phases and properties were studied in detail. Alinite cement was already produced on a larger scale in a rotary kiln of 10m length. These cements can be used for application purposes in mining mortars, expansive cements, rapid hardening binders and in landfill technologies. The hydration process and workability can be controlled by using various additives. hus industrial wastes can be a secondary resource for special cement production.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Cohen, M.D.: Theories of expansion in sulfoaluminate - type expansive cements: schools of thought cement and Concrete Research 13, 809818, 1983.Google Scholar
2. Depmeier, W.: Aluminate sodalites - a family with strained structures and ferroic phase transitions; Phys. Chem. Minerals 15, 419426, 1988 Google Scholar
3. Depmeier, W.; Yamamoto, A.: Powder profile refinement of a commensurately modulated aluminate sodalite; Materials Science Forum Vol. 79–82. 763768, 1991 Google Scholar
4. Götze, W.; Buschmann, N.; Schroer, D.: Ausbautechnische Anforderungen an Baustoffe im Bergbau; Glückauf 120, Nr. 21, S. 13971413, 1984 Google Scholar
5. Hanic, F.; Havlica, J.; Kapralik, I; Ambruz, V.; Galikova, L.; und Urbanova, O.: Crystal chemistry and thermodynamics of the sulfate compounds Ca4 [Al6O12](SO4) and Ca5(SiO4 2(SO)4 ; Br. Ceram. Trans. J. 85, 5257, 1986 Google Scholar
6. Kurdowski, W.: Expansive cements; 7th International Congress on the Chemistry of Cement, Paris 1, V2/1–V2/11, 1980 Google Scholar
7. Motzet, H., Pöllmann, H. & Neubauer, J.: Alinite-cement made from waste incineration residues - from basic research to application - Proc. 16th Int.Con.Chem.Cem., Richmond, 210 - 229, 1994 Google Scholar
8. Neubauer, J.; Pöllmann, H.; Hydraulische Sodalite; Kristallographie und Hydratation; Europ. J. Min.,Beihefle, 206, 1992 Google Scholar
9. Oberste-Padtberg, R.; Roeder, A.; Motzet, H.; Herbig, J: Alinit aus Müllverbrennungsrückständen; in Faulstich, M. (Hrsg.): Rückstände aus der Müllverbrennung, EF-Verlag für Energie- und Umwelttechnik, Berlin, S 809835, 1992 Google Scholar
10. Oberste-Padtberg, R.; Neubauer, J.: Laborversuche zur Herstellung von Alinitzement aus Müllverbrennungsrückständen; WLB, Wasser, Luft und Boden, Heft 10B, S. 6365, 1989 Google Scholar
11. Oberste-Padtberg, R.; Schweden, K. : Zur Freisetzung von Wasserstoff aus Mörteln mit MVA-Reststoffen; WLB, Wasser Luft und Boden, S. 6162, 1990 Google Scholar
12. Oberste-Padtberg, R.; Roeder, A.; Motzet, H.; Spicker, V. : Alinitzement, ein hydraulisches Bindemittel, hergestellt aus Müllverbrennungsrückständen; ZKG, Zement-Kalk-Gips, 45. Jahrg.; Heft 9, S. 451455, 1992 Google Scholar
13. Okushima, M.; Kondo, R.; Mugurma, H. und Ono, Y. : Development of expansive cement with calcium sulphoaluminious cement clinker; Proc. 5th International Symposium on the Chemistry of Cement, Tokio 4, 419438, 1968 Google Scholar
14. Pöhl, K.: Zur Konstitution und Hydratation deutscher Braunkohlefilteraschen - Dissertation Univ. Leipzig, 1994 Google Scholar
15. Pöllmann, H. : Capability of cementitious materials in the immobilization process of hazardous waste materials; Proc. 15th Int.Con. Cem.,Micr., Dallas, Texas, 108126, 1993 Google Scholar
16. Pliego-Cuervo, Y.B., Glasser, F.P.: Phase relations and crystal chemistry of apatite and silicocarnotite solid solutions - Cem.Concr:Res. 8, 519523, 1978 Google Scholar
17. Pliego-Cuervo, Y.B., Glasser, F.P. : Role of sulphates in cement clinkering reactions: Phase formation and melting in the system CaO-Ca2SiO4 -CaSO4 -K2 SO4- Cem:Concr.Res. 7, 477482, 1977 Google Scholar
18. Pliego-Cuervo, Y.B., Glasser, F.P. : Role of sulphates in cement clinkering: The calcium silico sulphate phase - Cem.Concr.Res. 8, 455460, 1978 Google Scholar
19. Pliego-Cuervo, Y.B., Glasser, F.P. : Role of sulphates in cement clinkering:subsolidus phase relations in the system CaO-A1203-SiO2 -SO3- Cem:Concr.Res. 9, 5156, 1979 Google Scholar
20. Pliego-Cuervo, Y.B., Glasser, F.P.: Role of sulphates in cement clinkering:Phase formation in the system CaO-Al2O3 -Fe2O3 -SiO2 -CaSO4 -K2 SO4- Cem.Concr.Res. 9, 573581, 1979bGoogle Scholar
21. Ponomarev, V.I.; Kheiker, D.M. und Belov, N.V. : Crystal Structure of tetracalcium trialuminate; the aluminate analoge of sodalite; Soviet Physics Crystallography 15(5), 799801, 1971 Google Scholar
22. Roeder, A. : Möglichkeiten zur Verwertung von Rauchgasreinigungsruckstanden am Beispiel der Herstellung von Alinitzement; in Gutke, K. (Hrsg.) : Symposium : Abfallverbrennung, kein Reizthema mehr ? Abfall und Wirtschaft in Deutschland, Kirsten Gutke Verlag, Köln, S. 133152, 1992 Google Scholar
23. Zysk, K-H.; Schroer, D. : Einsatzmöglichkeiten von REA-Produkten im Steinkohlenbergbau; ZKG, Zement-Kalk-Gips, 46. Jahrg., Heft 5, S. 268274, 1993 Google Scholar
24. Zysk, K.-H.; Roski, H.-J.; Schroer, D. : Anwendungsgerechte Prüfung von Baustoffen bei der DMT; Gliuckauf 129, 1993.Google Scholar