Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T00:59:12.583Z Has data issue: false hasContentIssue false

The Use of Cerium Valence State for Evaluation of Accessory Minerals Durability to Radiation Damage

Published online by Cambridge University Press:  21 March 2011

Roman V. Bogdanov
Affiliation:
Department of Chemistry, Saint-Petersburg State University, 199034, St. Petersburg, Russia; e-mail: r.bogdanov@RB7584.spb.edu
Yuri M. Zaytsev
Affiliation:
Department of Chemistry, Saint-Petersburg State University, 199034, St. Petersburg, Russia; e-mail: r.bogdanov@RB7584.spb.edu
andrey S. Sergeev
Affiliation:
Department of Geology, Saint-Petersburg State University, 199034, St. Petersburg, Russia
Get access

Abstract

Cerium-actinide bearing natural minerals which demonstrate their long-time physicochemical durability under the environment effect would be considered as analogues of actinide ceramic waste forms. Radiation damage of crystalline materials causes oxidation of cerium from initial Ce(III) to Ce(IV). Therefore, cerium valence state in actinide-cerium bearing natural minerals in some cases reflects the resistance of such minerals to radiation damage. Cerium valence state was determined in the following natural minerals of similar age and similar U-Th-contents: monazite (four samples), britholite (two samples), and aeschynite (one sample). The method of chemical shifts of X-ray emission (CeKá1 line) was used. The following contents of Ce(IV) were observed: more then 30 % in britholite, 11 % in aeschynite, 0 % in monazite. The results obtained suggest that durability of these actinide host phases with respect to radiation damage decreases in the monazite-aeschynite-britholite series.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xu, Huifang, Wang, Yifeng: Mat. Res. Soc. Symp. Proc., Vol. 556, 149156 (1999).Google Scholar
2. Valter, A. A. and Eremenko, G. K.: Zapiski Vsesojuznogo Mineralogicheskogo obschestva, series 2, part 93, 6468 (1964) (in Russian).Google Scholar
3. Gong, W. L. Ewing, R. C. Wang, L. M. and Xie, H. S.: Mat. Res. Soc. Symp. Proc., Vol. 412, 377384 (1996).Google Scholar
4. Lumpkin, G. R. Smith, K. L. and Blackford, M. G.: Mat. Res. Soc. Symp. Proc., Vol. 353, 855862 (1995).Google Scholar
5. Pepin, J. G. Vance, E. R. and McCarthy, G. J.: Materials Research Bulletin, Vol. 16, 627633 (1981).Google Scholar
6. Buck, E. C. Chamberlain, D. B. and Giere, R.: Mat. Res. Soc. Symp. Proc., Vol. 556, 1926 (1999).Google Scholar
7. Fortner, J. A. and Buck, E. C.: Appl. Phys. Lett., Vol. 68, 38193821 (1996).Google Scholar
8. Icenhower, J. P. McGrail, B. P. Schaef, H. T. and Rodriguez, E. A.: Mat. Res. Soc. Symp. Proc., Vol. 608, 373378 (2000).Google Scholar
9. Vienna, J. D. Peeler, D. K. Darab, J. G.et al: Mat. Res. Soc. Symp. Proc., Vol. 556, 321328 (1999).Google Scholar
10. Raison, P. E. Haire, R. G. Sato, T., and Ogawa, T.: Mat. Res. Soc. Symp. Proc., Vol. 556, 310 (1999).Google Scholar
11. Tunis, A. V. Samsonov, V. M. and Sumbaev, O. I.: The crystall-diffraction spectrometer for measurements of chemical shifts of L-series actinides X-ray lines (in Russian.): Preprint of the Leningrad Inst. of Nucl. Physics, No 151. Leningrad, 1975.Google Scholar
12. Zakharov, V. A. Songina, O. A. and Bekturova, G. B.: Zhurnal analiticheskoi khimii, Vol. 31, No 11, 22122219 (1976) (in Russian).Google Scholar
13. Kobashi, A., Sato, J., and Saito, N.: Radiochimica Acta, Vol. 26, No 2, 107111 (1979).Google Scholar
14. Bogdanov, R. V. Dondukova, L. V. Sergeev, A. S. e. a.: Radiokhimia, Vol. 29, No 2, 261267 (1987) (in Russian).Google Scholar
15. Halab, Sh.: University degree work. Leningrad State University, Radiochemical Department. Leningrad, 1988, 40 p (in Russian).Google Scholar