Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T23:54:17.331Z Has data issue: false hasContentIssue false

Use of High Surface Area TiO2 Nanosheet in Dye-sensitized Solar Cell

Published online by Cambridge University Press:  01 February 2011

Sorapong Pavasupree
Affiliation:
sorapongp@yahoo.com, Institute of Advanced Energy, Kyoto University, Molecular Assemblies Design Research Section, Gokasho, Uji, 611-0011, Japan, +81-774-38-3504, +81-774-38-3508
Supachai Ngamsinlapasathian
Affiliation:
supachai@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
Yoshikazu Suzuki
Affiliation:
suzuki@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
Susumu Yoshikawa
Affiliation:
s-yoshi@iae.kyoto-u.ac.jp, Institute of Advanced Energy, Kyoto University, Uji, 611-0011, Japan
Get access

Abstract

High surface area nanosheet TiO2 with mesoporous structure were synthesized by hydrothermal method at 130 °C for 12 h. The samples characterized by XRD, SEM, TEM, SAED, and BET surface area. The nanosheet structure was slightly curved and approximately 50-100 nm in width and several nanometers in thickness. The as-synthesized nanosheet TiO2 had average pore diameter about 3-4 nm. The BET surface area and pore volume of the sample were about 642 m2/g and 0.774 cm3/g, respectively. The solar energy conversion efficiency (η) of the cell using nanorods/nanoparticles TiO2 (from the nanosheet calcined at 450 °C for 2 h) with mesoporous structure was about 7.08 % with Jsc of 16.35 mA/cm2, Voc of 0.703 V and ff of 0.627; while η of the cell using P-25 reached 5.82 % with Jsc of 12.74 mA/cm2, Voc of 0.704V and ff of 0.649.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Sasaki, T., Nakano, S., Yamauchi, S., and Watanabe, M., Chem. Mater., 9, 602 (1997).Google Scholar
2. Kasuga, T., Hiramatsu, M., Hoson, A., Sekino, T., and Niihara, K., Langmuir, 14, 3160 (1998).Google Scholar
3. Suzuki, Y., Pavasupree, S., Yoshikawa, S. and Kawahata, R., J. Mater. Res., 20, 1063 (2005).Google Scholar
4. Pavasupree, S., Suzuki, Y., Yoshikawa, S. and Kawahata, R., J. Solid State Chem., 178, 3110 (2005).Google Scholar
5. Suzuki, Y., Ngamsinlapasathian, S., Yoshida, R., and Yoshikawa, S., Central Euro. J. Chem., 4, 476 (2006).Google Scholar
6. Pavasupree, S., Ngamsinlapasathian, S., Nakajima, M., Suzuki, Y., and Yoshikawa, S., J. Photochem. Photobio. A: Chem., (2006) (in press).Google Scholar
7. Park, N.-G., van de Lagemaat, J., Frank, A.J., J. Phys. Chem. B 104, 8989 (2000).Google Scholar
8. Yoon, J. –H., Jang, S. –R., Vittal, R., Lee, J., and Kim, K. –J., J. Photochem. Photobio. A: Chem., 180, 184 (2006).Google Scholar
9. Dresselhaus, M. S., Lin, Y. M., Rabin, O., Jorio, A., Filho, A. G. Souza, Pimenta, M. A., Saito, R., Samsonidze, G., and Dresselhaus, G., Mater. Sci. Eng., C, 23, 129 (2003).Google Scholar
10. Jiu, J., Wang, F., Isoda, S., and Adachi, M., Chem. Lett., 34,1506 (2005).Google Scholar
11. Pavasupree, S., Ngamsinlapasathian, S., Suzuki, Y., and Yoshikawa, S., J. Nanosci. Nanotech., (2006) (in press).Google Scholar