Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-14T17:39:28.085Z Has data issue: false hasContentIssue false

Use of Mössbauer Spectroscopy for the Characterization of Order/Disorder Phenomena in Tin(II) Containing Ionic Conductors and for Making Predictions Regarding Possible Electron Contribution to the Conduction

Published online by Cambridge University Press:  10 February 2011

Georges Dénès
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montreal, Quebec, Canada
M. Cecilia Madamba
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montreal, Quebec, Canada
Abdualhafeed Muntasar
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montreal, Quebec, Canada
Alena Peroutka
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montreal, Quebec, Canada
Korzior Tam
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montreal, Quebec, Canada
Zhimeng Zhu
Affiliation:
Concordia University, Department of Chemistry and Biochemistry, Laboratory of Solid State Chemistry and Mössbauer Spectroscopy, and Laboratories for Inorganic Materials, Montreal, Quebec, Canada
Get access

Abstract

Mössbauer spectroscopy has been seldom used for the characterization of ionic conductors. However, since the introduction of divalent tin in MF2 fluorites (M = Sr, Pb and Ba) to form MSnF4, PbSn4F10 or the Pb1−xSnxF2 solid solution, all of which have structures closely related to the fluorite type, results in an enhancement of the fluoride ion conductivity by up to three orders of magnitude, and since 119 Sn is the second best Mössbauer nuclide, it seems that the Mössbauer technique could provide useful information about how tin(II) modifies the fluorite structure and leads to such a tremendous enhancement of the fluoride ion mobility. The MF2/SnF2 systems contain some number of materials that show order/disorder phenomena (between M and Sn, and also between different fluorine atoms) which make it difficult to understand them from diffraction data only. Mössbauer spectroscopy has been invaluable in helping understand the local structure at tin. By probing the valence electronic structure of tin, we can also make predictions on the possible long range mobility of the tin(II) non-bonded electron pair, which would make the material an electronic conductor or a mixed conductor.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dénès, G., Pannetier, J., Lucas, J. and Le Marouille, J.Y. (1979)J Solid State Chem. 30, 335343.Google Scholar
2. Dénès, G., Pannetier, J. and Lucas, J. (1980)J. Solid State Chem 33, 112.Google Scholar
3. Pannetier, J., Dénès, G., Durand, M. and Buevoz, J.L. (1980) J. Physique 41, 10191024.Google Scholar
4. Donaldson, J.D. and Silver, J. (1973).J Chem. Soc. A, 666.Google Scholar
5. Wyckoff, R. G. (1982) Crystal Structures, 1, Interscience New York, p.432.Google Scholar
6. Dénès, G., Birchall, T., Sayer, M., Bell, M.F. (1984) Solid State Ionics 13, 213219.Google Scholar
7. Dénès, G., Milova, G., Madamba, M.C., and Perfiliev, M. (1996) Solid State Ionics 86–88, 7782.Google Scholar
8. Claudy, P., Letoffe, J.M., Vilminot, S., Granier, W., Al Ozaibi, Z. and Cot, L. (1981) J. Fluorine Chem. 18, 203.Google Scholar
9. Barrett, J., Bird, S.R.A., Donaldson, J.D. and Silver, J. (1971) J. Chem. Soc. (A), 3105.Google Scholar
10. Dénès, G. (1988) J. Solid State Chem. 77, 5459.Google Scholar
11. Ruebenbauer, K. and Birchall, T. (1979) Hyperfine Interact 7,125.Google Scholar
12. Monnier, J., Dénès, G. and Anderson, R.B. (1984) Canad J Chem Eng. 62, 419424.Google Scholar
13. Dénès, G., Pannetier, J. and Lucas, J. (1975) CR. AcadSci Paris Ser C 280, 831834.Google Scholar
14. Birchall, T., Dénès, G., Ruebenbauer, K and Pannetier, J. (1981). J Chem Soc., Dalton Tran., 22962299.Google Scholar
15. Dénès, G. and Laou, E. (1994) Hyperfine Interact. 92, 10131018.Google Scholar
16. Donaldson, J.D. and Senior, B.D. (1967). Chem. Soc. A, 18211825.Google Scholar
17. Birchall, T., Dénës, G., Ruebenbauer, K and Pannetier, J. (1986) Hyperfine Interact. 29, 13311334.Google Scholar
18. Dénès, G., Tyliszczak, T, Yu, Y.H. and Hitchcock, A.P.(1991)J. Solid State Chem 91, 115.Google Scholar
19. Galy, J., Meunier, G., Aström, A. and Andersson, S. (1975) J. Solid State Chem 13, 142159.Google Scholar
20. Brown, I.D. (1974) J.Solid State Chem 11,214233.Google Scholar
21. Pannetier, J., Dénès, G. and Lucas, J. (1979) Mater. Res Bull 14, 627631.Google Scholar
22. Dénès, G., Tyliszczak, T, Yu, Y.H. and Hitchcock, A.P.(1993)J. Solid State Chem 104, 239252.Google Scholar
23. Pannetier, J. and Dénès, G. (1980) Acta Cryst. B 36, 27632765.Google Scholar
24. Dénès, G. (1995) Solid State Ionics IV, Mat. Res. Symp. Proc. 369. 295300.Google Scholar
25. Saiful, Islam M. (1989) Solid State Ionics, Mat. Res. Symp. Proc. 135. 295300.Google Scholar