Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-15T00:41:25.290Z Has data issue: false hasContentIssue false

V2O5-P2O5-Fe2O3-Li2O Glass-Ceramics as High-Capacity Cathode for Lithium-Ion Batteries

Published online by Cambridge University Press:  25 February 2014

Takuya Aoyagi
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken 319-1292, Japan
Tadashi Fujieda
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken 319-1292, Japan
Kazutaka Mitsuishi
Affiliation:
National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
Jun Kawaji
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken 319-1292, Japan
Tatsuya Toyama
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken 319-1292, Japan
Kazushige Kono
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken 319-1292, Japan
Takashi Naito
Affiliation:
Hitachi Research Laboratory, Hitachi, Ltd., 7-1-1 Omika-cho, Hitachi-shi, Ibaraki-ken 319-1292, Japan
Get access

Abstract

We discuss the advantages of V2O5-P2O5-Fe2O3-Li2O glass-ceramics as a cathode for lithium-ion batteries. The glass was prepared by using the melt quenching method. The glass-ceramics were produced by heat treatment in air. LixV2O5 crystal was only confirmed as the precipitated phase and the degree of crystallinity was approximately 90%. The total capacity of the glass-ceramics was 340 Ah/kg at a C/20 rate for 1.5-4.2 V cutoff ranges. It is 10% higher than the capacity of the glass cathode. Moreover, the charge-discharge performance of the glass-ceramics cathode showed good cycleability similar to that of the glass. The glass-ceramics had a 83% capacity retention after 40 cycles. These results show that glass-ceramics is a potential candidate for lithium-ion cathode materials.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Le, D. B., Passerini, S., Coustier, F., Guo, J., Soderstrom, T., Owens, B. B. and Smyrl, W. H., Chem. Mater. 10, 682 (1998).CrossRefGoogle Scholar
Sarker, S., Banda, H. and Mitra, S., Electrochimica Acta 99, 242 (2013).CrossRefGoogle Scholar
Asl, N. M., Kim, J. H., Lee, W. C., Liu, Z., Lu, P. and Kim, Y., Electrochimica Acta 105, 403 (2013).CrossRefGoogle Scholar
Li, H., He, P., Wang, Y., Hosono, E. and Zhou, H., J. Mater. Chem. 21, 10999 (2011).CrossRefGoogle Scholar
Rui, X., Sim, D., Xu, C., Liu, W., Tan, H., Wong, K., Hng, H. H., Lim, T. M. and Yan, Q., RSC Advances 2, 1174 (2012).CrossRefGoogle Scholar
Cocciantelli, J. M., Doumerc, J. P. and Pouchard, M., J. Power Sources 34, 103 (1991).CrossRefGoogle Scholar
Delmas, C., Auradou, H. C., Cocciantelli, J. M., Menetrier, M. and Doumerc, J. P., Solid State Ionics 69, 257 (1994).CrossRefGoogle Scholar
Delmas, C., Brethe, S. and Menetrier, M., J. Power Sources 34, 113 (1991)CrossRefGoogle Scholar
Cartier, C., Tranchant, A., Verdaguer, M., Messina, R. and Dexpert, H., Electrochimica Acta 35, 889 (1990).CrossRefGoogle Scholar
Wang, Y., Takahashi, K., Lee, K. H. and Cao, G. Z., Adv. Funct. Mater. 16, 1133 (2006).CrossRefGoogle Scholar
Liu, D., Liu, Y., Garcia, B. B., Zhang, Q., Pan, A., Jeong, Y. H. and Cao, G., J. Mater. Chem. 19, 8789 (2009).CrossRefGoogle Scholar
Sakurai, Y. and Yamaki, J., J. Electrochemical. Soc. 135(4), 791 (1988).CrossRefGoogle Scholar
Levy, M., Rousseau, F. and Duclot, M. J., Solid State Ionics 2830, 736 (1988).CrossRefGoogle Scholar
Delaizir, G., Seznec, V., Rozier, P., Surcin, C., Salles, P. and Dolle, M., Solid State Ionics 237, 22 (2013).CrossRefGoogle Scholar
Naito, T., Namekawa, T., Yamada, S. and Maeda, K., J. Ceram. Soc. Jpn. Inter. Ed. 97, 822 (1989).Google Scholar
Liaw, B. Y., Raistrick, I. D. and Huggins, R. A., Solid State Ionics 45, 323 (1991).CrossRefGoogle Scholar
Farcy, J., Maingot, S., Soudan, P., Pereira-Ramos, J. P. and Baffier, N., Solid State Ionics 99, 61 (1997).CrossRefGoogle Scholar