Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-21T12:59:16.006Z Has data issue: false hasContentIssue false

Van Der Waals Epitaxy of GaSe on WSe2

Published online by Cambridge University Press:  25 February 2011

O. Lang
Affiliation:
Hahn-Meitner-Institut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
R. Schlaf
Affiliation:
Hahn-Meitner-Institut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
Y. Tomm
Affiliation:
Hahn-Meitner-Institut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
C. Pettenkofer
Affiliation:
Hahn-Meitner-Institut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
W. Jaegermann
Affiliation:
Hahn-Meitner-Institut, Abteilung Solare Energetik, Glienicker Str. 100, 1000 Berlin 39, Germany
Get access

Abstract

GaSe layers were grown on the van der Waals (0001) planes of WSe2 (van der Waals epitaxy). The substrate (0001) plane was cleaned in UHV by heating to 400°C. GaSe was deposited from resistively heated Knudsen cells at T=300° C. After annealing at 450°C an epitaxial GaSe overlayer is formed as evidenced by X-ray diffraction, scanning tunneling microscopy, low energy electron diffraction and photoelectron spectroscopy.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wilson, J.A. and Yoffe, A.D., Adv.Phys., 1969, 18: p. 193.Google Scholar
2 Aruchamy, A., ed. Photooelectrochemistry and Photovoltaic of Layered Semiconductors. 1992, Kluwer; Dordrecht.Google Scholar
3 Tenne, R. and Wold, A., Appl. Phys. Lett., 1985, 47: p. 707.Google Scholar
4 Segura, A., et al. in 7th European Community Photovoltaic Solar Energy Conference. 1987. D. Reidel Publ. Comp.; Dordrecht, Boston, Lancaster, Tokyo.Google Scholar
5 Bucher, E., in ref.[2]Google Scholar
6 Koma, A. and Yoshimura, K., Surf. Sci., 1986, 174: p. 556560.Google Scholar
7 Saiki, K., et al., J. Cryst. Growth, 1989, 95: p. 603606.Google Scholar
8 Koma, A., Saiki, K., and Sato, Y., Appl. Surf. Sci., 1989, 41/42: p. 451456.Google Scholar
9 Jaegermann, W., in ref.[2].Google Scholar
10 Klein, A., et al., unpublished results.Google Scholar
11 Margaritondo, G., Photoemission, in Electronic Structure and Electronic Transitions in Layered Materials, Grasso, V., Editor. 1986, D. Reidel Publishing Company; Dordrecht, Boston, Lancaster, Tokyo.Google Scholar
12 Jellinek, F. and Hahn, H., Z. Naturforsch, 1961. 16b: p. 713.Google Scholar
13 Ohuchi, F.S., et al., J. Appl. Phys., 1990, 68(5): p. 2168.Google Scholar
14 Powder Diffraction File, Inorganic Phases, International Centre for Diffraction Data; Swarthmore, PA (1987).Google Scholar
15 Levy, F. (ed.), Crystallography and Crystal Chemistry of Materials with Layered Structures. 1976. D. Reidel; Dordrecht.Google Scholar