Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-18T23:19:36.005Z Has data issue: false hasContentIssue false

Variational Monte Carlo on a Parallel Architecture: An Application to Graphite

Published online by Cambridge University Press:  10 February 2011

M. Menchi
Affiliation:
INFM and Dipartimento di Scienze Fisiche, Università di Cagliari, Italy
A. Bosin
Affiliation:
INFM and Dipartimento di Scienze Fisiche, Università di Cagliari, Italy
S. Fahy
Affiliation:
Physics Department, University College Cork, Ireland
Get access

Abstract

We present the parallelization strategy adopted to perform Variational Quantum Monte Carlo calculations on solids on distributed-memory architectures and the issues involved in the development of the parallel programs. Results obtained by the calculation of total electronic energy of graphite using nonlocal pseudopotentials in conjunction with the Variational Monte Carlo approach will be shown.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ceperley, D., Chester, G. V., and Kalos, M. H., Phys. Rev. B 16, 3081 (1977). D. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).Google Scholar
2. Ceperley, D. and Alder, B. J., Phys. Rev. B 36, 2092 (1987).Google Scholar
3. Fahy, S., Wang, X. W., and Louie, S. G., Phys. Rev. B 42, 3503 (1990).Google Scholar
4. Pang, T. and Louie, S. G., Phys. Rev. Lett. 65, 1635 (1990).Google Scholar
5. Li, X. P., Ceperley, D. M., and Martin, R. M., Phys. Rev. B 44, 10929 (1991).Google Scholar
6. for a review, see Theory of the Inhomogeneous Electron Gas, ed. by Lundqvist, S. and March, N. H. (Plenum, New York, 1983).Google Scholar
7. Geist, A., Beguelin, A., Dongarra, J., Jiang, W., Manchek, R., Sunderam, V., PVM 3 user's guide and reference manual, Oak Ridge National Laboratory (Tennesse, USA, 1994).Google Scholar
8. Umrigar, C. J., Nightingale, M. P., and Runge, K. J., J. Chem. Phys. 99, 2865 (1993).Google Scholar
9. Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E., J. Chem. Phys. 21, 1087 (1953).Google Scholar
10. Umrigar, C. J., Phys. Rev. Lett. 71, 408 (1993).Google Scholar
11. Chelikowski, J. R. and Louie, S. G., Phys. Rev. B 29, 3470 (1984); C. T. Chan, D. Vanderbilt, and S. G. Louie, 33, 2455 (1986).Google Scholar
12. Ibm, J., Zunger, A., and Cohen, M., J. Phys. C 12, 4409 (1979).Google Scholar
13. Dongarra, Jack, Geist, G. A., Manchek, Robert, and Sunderam, V. S., Computers in Physics 7, 166 (1993).Google Scholar
14. Umrigar, C. J., Wilson, K. G. and Wilkins, J.W., Phys. Rev. Lett. 60, 1719 (1988).Google Scholar
15. Ceperley, D. Phys. Rev. B 18, 3126 (1978).Google Scholar
16. Park, S. K. and Miller, K. W., Communications of the ACM 31, 1192 (1988).Google Scholar
17. L'Ecuyer, P., Communications of the ACM 31,742 (1988).Google Scholar
18. Hamann, D. R., Schliiter, M., and Chiang, C., Phys. Rev. Lett. 43, 1494 (1979).Google Scholar
19. Rajagopal, G., Needs, R. J., Kenny, S., Foulkes, W. M. C., James, A., Wang, Y., and Chou, M. Y., Bull. Am. Phys. Soc. 39, 619 (1994).Google Scholar