Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T07:01:05.650Z Has data issue: false hasContentIssue false

The Velocity-Field Characteristic Of Indium Nitride

Published online by Cambridge University Press:  10 February 2011

S. K. O'Leary
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
B. E. Foutz
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
M. S. Shur
Affiliation:
Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180–3590
L. F. Eastman
Affiliation:
School of Electrical Engineering, Cornell University, Ithaca, New York 14853
U. V. Bhapkar
Affiliation:
Naval Surface Warfare Center, Code T44, Building 1470, Dahlgren, Virginia 22448
Get access

Abstract

We determine the velocity-field characteristic of wurtzite indium nitride using an ensemble Monte Carlo approach. It is found that indium nitride exhibits an extremely high room temperature peak drift velocity, 4.2 × 107 cm/s, at a doping concentration of 1 × 1017 cm−3. This exceeds that of gallium nitride, 2.9 × 107 cm/s, by approximately 40 %. For our nominal parameter selections, the saturation drift velocity of indium nitride is found to be 1.8 × 107 cm/s. The device performance of this material, as characterized by the cut-off frequency, is found to superior to that of gallium nitride, gallium arsenide, and silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Strite, S. and Morkoç, H., J. Vac. Sci. Technol. B 10, 1237 (1992).Google Scholar
[2] Nakamura, S., Mater. Res. Bull. 22 (2), 29 ( 1997 ).10.1557/S088376940003253XGoogle Scholar
[3] Shur, M. S. and Khan, M. A., Mater. Res. Bull. 22 (2), 44 ( 1997 ).Google Scholar
[4] Littlejohn, M. A., Hauser, J. R., and Glisson, T. H., Appl. Phys. Lett. 26, 625 ( 1975 ).10.1063/1.88002Google Scholar
[5] Ferry, D. K., Phys. Rev. B 12, 2361 ( 1975 ).10.1103/PhysRevB.12.2361Google Scholar
[6] Gelmont, B., Kim, K., and Shur, M., J. Appl. Phys. 74, 1818 ( 1993 ).10.1063/1.354787Google Scholar
[7] Kolnik, J., Oğuzman, İ. H., Brennan, K. F., Wang, R., Ruden, P. P., and Wang, Y., J. Appl. Phys. 78, 1033 ( 1995 ).10.1063/1.360405Google Scholar
[8] Shur, M., Gelmont, B., and Khan, M. A., J. Electron. Mater. 25, 777 ( 1996 ).10.1007/BF02666636Google Scholar
[9] Bhapkar, U. V. and Shur, M. S., J. Appl. Phys. 82, 1649 ( 1997 ).10.1063/1.365963Google Scholar
[10] Shur, M., Physics of Semiconductor Devices ( Prentice-Hall, Englewood Cliffs, 1990 ).Google Scholar
[11] Other aspects of the InN velocity-field characteristic are to be presented in a forthcoming publication [12]Google Scholar
[12] O'Leary, S. K., Foutz, B. E., Shur, M. S., Bhapkar, U. V., and Eastman, L. F., J. Appl. Phys. ( in press ).Google Scholar
[13] Chin, V. W. L., Tansley, T. L., and Osotchan, T., J. Appl. Phys. 75, 7365 ( 1994).10.1063/1.356650Google Scholar
[14] Tsai, M.-H., Jenkins, D. W., Dow, J. D., and Kasowski, R. V., Phys. Rev. B 38, 1541 ( 1988 ).Google Scholar
[15] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. ( Inspec, London, 1994 ), p. 151.Google Scholar
[16] Yang, T., Nakajima, S., and Sakai, S., Jpn. J. Appl. Phys., Part 1 34, 5912 ( 1995 ).Google Scholar
[17] Lambrecht, W. R. L. and Segall, B., in Properties of Group III Nitrides, No. 11 EMIS Datareviews Series, edited by Edgar, J. H. ( Inspec, London, 1994 ), p. 141.Google Scholar
[18] O'Leary, et al. [12], following Bhapkar, and Shur, [9], employed the band structure of Kolnik et al. [7] for the case of GaN.Google Scholar
[19] This selection of upper conduction band effective mass is larger than that found in Bhapkar, and Shur, [9] and O'Leary, et al. [12], and hence the results are expected to be different.Google Scholar
[20] Xu, J., Bernhardt, B. A., Shur, M., Chen, C.-H., and Peczalski, A., Appl. Phys. Lett. 49, 342 ( 1986 ).10.1063/1.97162Google Scholar