Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-29T12:19:21.391Z Has data issue: false hasContentIssue false

Wet Chemical Etching of Zn-containing oxides and HfO2 for the fabrication of Transparent TFTs

Published online by Cambridge University Press:  31 January 2011

Jae-Kwan Kim
Affiliation:
kimjk@sunchon.ac.kr, Sunchon National University, Materials Science and Metallurgical Engineering, Sunchon, Chonnam, Korea, Republic of
Jun Young Kim
Affiliation:
zr1003@sunchon.ac.k, Sunchon National University, Materials Science and Metallurgical Engineering, Sunchon, Chonnam, Korea, Republic of
Seung-Cheol Han
Affiliation:
lunasea2k@nate.com, Sunchon National University, Materials Science and Metallurgical Engineering, Sunchon, Chonnam, Korea, Republic of
Joon Seop Kwak
Affiliation:
jskwak@sunchon.ac.kr, Sunchon National University, Materials Science and Metallurgical Engineering, Sunchon, Chonnam, Korea, Republic of
Ji-Myon Lee
Affiliation:
jimlee@sunchon.ac.kr, Sunchon National University, Materials Science and Metallurgical Engineering, Sunchon, Korea, Republic of
Get access

Abstract

The etch rate and surface morphology of Zn-containing oxide and HfO2 films after wet chemical etching were investigated. ZnO could be easily etched using each acid tested in this study, specifically sulfuric, formic, oxalic, and HF acids. The etch rate of IGZO was strongly dependent on the etchant used, and the highest measured etch rate (500 nm/min) was achieved using buffered oxide etchant at room temperature. The etch rate of IGZO was drastically increased when sulfuric acid at concentration greater than 1.5 molar was used. Furthermore, etching of HfO2 films by BF acid proceeded through lateral widening and merging of the initial irregular pits.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Nomura, K., Ohta, H., Takagi, A., Kamiya, T., Hirano, M. and Hosono, H., Nature. 432, 288 (2004).10.1038/nature03090Google Scholar
2 Kim, M., Jeong, J. H., Lee, H. J., Ahn, T. K., Shin, H. S., Park, J. S., Jeong, J. K., Mo, Y. G., and Kim, H. D., Appl. Phys. Lett. 90, 212114 (2007).10.1063/1.2742790Google Scholar
3 Park, J. S., Jeong, J. K., Mo, Y. G., and Kim, H. D., Appl. Phys. Lett. 90, 262106 (2007).10.1063/1.2753107Google Scholar
4 Jeon, H., Noh, K., Kim, D.-H., Jeon, M., Verma, V. P., Choi, W., Kim, D. and Moon, J., J. Korean Phys. Soc. 51, 1999 (2007).10.3938/jkps.51.1999Google Scholar
5 Park, J. M., Hong, J. S., Yang, J. Y., Kim, J. J., Park, S. H., Kim, H. M. and Ahn, J.-S., J. Korean Phys. Soc. 48, 1530 (2006).Google Scholar
6 Nomura, K., Takagi, A., Kamiya, T., Ohta, H., Hirano, M. and Hosono, H., Jpn. Appl. Phys. 45, 4303 (2006).10.1143/JJAP.45.4303Google Scholar
7 Wilk, G. D., Wallace, R. M., and Anthony, J. M., J. Appl. Phys., 89, 5243 (2001).10.1063/1.1361065Google Scholar
8 Lee, S. J., Luan, H. F., Bai, W. P., Lee, C. H., Jeon, T. S., Senzaki, Y., Roberts, D., and Kwong, D. L., Tech. Dig. Int. Electron Devices Meet. 31 (2000).Google Scholar
9 Lee, J. M., Kim, K. K., Hyun, C. K., Tampo, H., and Niki, S., J. Nanosci. and Nanotechnol. 6, 1 (2006).10.1166/jnn.2006.001aGoogle Scholar
10 Jo, Y. J., Kim, J. K., Han, S. C., Kwak, J. S., and Lee, J. M., J. Kor. Inst. Met. & Mater. 47, 44 (2009).Google Scholar
11 Gonçalves, G., Barquinha, P., Raniero, L., Martins, R., and Fortunato, E., Thin Solid Films. 516, 1374 (2008).10.1016/j.tsf.2007.03.087Google Scholar
12 Tsai, T.H. and Wu, Y. F., Microelectron. Eng. 83, 536 (2006).10.1016/j.mee.2005.12.003Google Scholar
13 Pearton, S. J., Chen, J. J., Lim, W. T., Ren, F., and Norton, D. P., ECS trans. 6, 501 (2007).10.1149/1.2731219Google Scholar