No CrossRef data available.
Article contents
A Wide Band Gap Boron-doped Microcrystalline Silicon Film Obtained with VHF Glow Discharge Method
Published online by Cambridge University Press: 01 February 2011
Abstract
A wide bandgap microcrystalline silicon film for the window layer of microcrystalline silicon thin film solar cells was obtained with very high frequency (VHF) glow discharge technology. The material was deposited on corning 7059 substrate at about 170 When H2/SiH4 was more than 100, Raman spectra showed that this material was highly crystallized, and no peak correlation with amorphous silicon was observed. This material showed strong n type before any intentional doping. We considered that the unintentional doping of oxygen and unpurified gases. The doping performance of this material was investigated by introducing B2H6 into the reacting gas. As increasing the rate of B2H6/SiH4 from zero to 0.5%, the conductivity changed from 10-1S.cm-1 (n type) to 10-8 S.cm-1 dramatically and than backed to 10-1 S.cm-1 (p type), which indicated that this material had excellent doping ability. Raman spectra also showed that the microstructure of these materials did not change obviously in this doping range. We gained the p-uc-Si:H film with thickness less than 30nm, and the conductivity was more than 10-2 S.cm-1, and crystalline volume fraction no less than 40%, the Egopt could be wider than 2.10eV. Using this p window layer in microcrystalline silicon solar cells with no ZnO rear reflection, the conversion efficiency was 8.30% (Voc=0.531V, Jsc=24.66mA/cm2, FF=63.41% ).
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2005