Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T01:01:15.794Z Has data issue: false hasContentIssue false

Work function of carbon nanotubes

Published online by Cambridge University Press:  15 March 2011

Masashi Shiraishi
Affiliation:
Frontier Science Laboratories, SONY Corporation, Shin-Sakuragaoka 2-1-1, Hodogaya-ku, Yokohama 240-0036, Japan
Masafumi Ata
Affiliation:
Frontier Science Laboratories, SONY Corporation, Shin-Sakuragaoka 2-1-1, Hodogaya-ku, Yokohama 240-0036, Japan
Get access

Abstract

The work functions of multi- and single-walled carbon nanotubes are found to be 4.95eV and 5.10eV respectively. The measurements were carried out using the photoelectron emission (PEE) method, which allows easy and precise measurements to be made in air. We have found that the work function of the nanotubes is 0.1–0.2eV larger than that of highly oriented pyrolytic graphite (HOPG) of which the valence state is σ–Φ orthogonal. This result is ascribable to reflection of the σ–Φ⊏ mixed valence state in the case of carbon nanotubes. The experimental data were well reproduced in ab-initio calculations on planar and cylindrical conjugated states.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bockrath, M., Cobden, D. H., McEuen, P. L., Chopra, N. G., Zettl, A., Thess, A. and Smalley, R. E., Science 275, 19221925(1997).Google Scholar
2. Yao, Z., Postma, H. W. Ch., Balents, L. and Dekker, C., Nature 402, 273(1999).Google Scholar
3. Ye, Y., Ahn, C., Witham, C., Fultz, B., Liu, J., Rinzler, G., Colbert, D., Smith, K. A. and Smalley, R. E., Appl. Phys. Lett. 74, 23072309(1999).Google Scholar
4. Kim, J. M., Lee, N. S., Choi, W. B., Jung, J. E., Han, I. T., Jung, D. S., Park, S. H., Hong, S. S., kang, J. H. and Kim, H. Y., Abstract of 14th International Winterschool on Electronic Properties of Novel Materials, 54(2000).Google Scholar
5. Collins, P. G. and Zettl, A., Phys.Rev. B55, 93919399(1997).Google Scholar
6. Suzuki, S., Bower, C., Watanabe, Y. and Zhou, O., Appl. Phys. Lett. 76, 40074009(2000).Google Scholar
7. Ago, H., Kugler, T., Cacialli, F., Salaneck, W. R., M. Shaffer, S. P., Windle, A. H. and Friend, R. H., J. Phys. Chem. B103, 81168121(2000).Google Scholar
8. Uda, M., Proc. 8th International Symposium Exoelextron Emission and Application, (1985).Google Scholar
9. Ochiai, Y., Ishikawa, S. and Mori, S., Abstract of 16th Fullerene Symposium, 129 (1997). (In Japanese)Google Scholar
10. Dresselhaus, M. S., Dresselhaus, G. and Saito, R., Sol. Stat. Comm. 84, 201205(1992).Google Scholar