Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-28T10:21:05.423Z Has data issue: false hasContentIssue false

Xanes and Exafs Analysis of Ball-Milled Fe-Ni

Published online by Cambridge University Press:  21 March 2011

P.J. Schilling
Affiliation:
Mechanical Engineering Department, University of New Orleans (UNO), New Orleans, LA 70148, USA, pschilli@uno.edu
R.C. Tittsworth
Affiliation:
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA
V. Palshin
Affiliation:
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA
J. Xu
Affiliation:
Center for Advanced Microstructures and Devices, Louisiana State University, Baton Rouge, LA 70806, USA
E. Ma
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
J.-H. He
Affiliation:
Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
Get access

Abstract

EXAFS and XANES analysis have been applied in a study of ball-milled nano-crystalline iron-nickel alloys prepared with overall compositions spanning the two-phase region. EXAFS analysis was used to determine bond distances for like and unlike atom pairs in single phase face-centered cubic Fe-Ni alloys, demonstrating the presence of bond dilation for unlike neighbors. Using XANES analysis, the compositions of the two coexisting solid solutions were determined to characterize the ball-milled two-phase region. The compositions of the coexisting face-centered and body-centered cubic phases were found to be consistent with the overall composition of the mixture. The results obtained for the negative heat-of-mixing Fe-Ni system were used for comparison to the positive heat-of-mixing Fe-Cu system.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hong, L.B. and Fultz, B., J. Appl. Phys. 79, 3946 (1996).Google Scholar
2. Schwarz, R.B., Petrich, R.R., and Saw, C.K., J Non-Cryst. Solids 76, 281 (1985).Google Scholar
3. Hellstern, E. and Schultz, L., Appl. Phys. Lett. 48, 124 (1986).Google Scholar
4. Yavari, A.R. and Desré, P., Mater. Sci. Eng. A 134, 1315 (1991).Google Scholar
5. Hellstern, E., Fecht, H.J., Fu, Z., and Johnson, W.L., J. Mater. Res. 4, 1292 (1989).Google Scholar
6. Yavari, A.R., Desre, P.J. and Benameur, T., Phys. Rev. Lett. 68, 2235 (1992).Google Scholar
7. Eckert, J., Holzer, J.C., Krill, C.E. III, and Johnson, W.L., J. Appl. Phys. 73, 2794 (1993);Google Scholar
8. Ma, E., Atzmon, M., and Pinkerton, F., J. Appl. Phys. 74, 955 (1993).Google Scholar
9. Fultz, B., Ahn, C.C., Spooner, S., Hong, L.B., Eckert, J., and Johnson, W.L., Metall. Mater. Trans. 27A, 2934 (1996).Google Scholar
10. Schilling, P.J., He, J. H., Cheng, J. and Ma, E., Appl. Phys. Lett. 68, 767 (1996).Google Scholar
11. Gaffet, E., Harmelin, M. and Faudot, F., J. Alloys. Comp. 194, 23 (1993)Google Scholar
12. Jiang, J.Z., Gonser, U., Gente, C. and Bormann, R., Appl. Phys. Lett. 63, 1056 (1993).Google Scholar
13. Hong, L.B. and Fultz, B., Acta Mater. 46, 2937 (1998).Google Scholar
14. Harris, V.G., Kemner, K.M., Das, B.N., Koon, N.C., Ehrlich, A.E., Kirkland, J.P., Woicik, J.C., Crespo, P., Hernando, A., Escorial, A. Garcia, Phys. Rev. B 54, 6929 (1996).Google Scholar
15. Schilling, P.J., He, J.H., Tittsworth, R.C., and Ma, E., Acta Mater., 47, 2525 (1999).Google Scholar
16. Waldo, G. S., Carlson, R. M. K., Moldowan, J. M., Peters, K.E., and Penner-Hahn, J.E., Geochimica et Cosmochimica Acta 55, 801 (1991).Google Scholar
17. George, G. N., Gorbaty, M. L., Kelemen, S. R., Sansone, M., Energy & Fuels 5, 93 (1991).Google Scholar
18. Maury, F., Lorenzelli, N., Mathon, M. H., Novion, C.H. de, Lagarde, P., J. Phys.: Condens. Matter 6, 569 (1994).Google Scholar
19. Schilling, P.J. and Tittsworth, R.C., J. Synchrotron Rad., 6, 497499 (1999).Google Scholar
20. Ressler, T., J. Physique IV France, 7, C2269 (1997).Google Scholar