Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T01:22:14.900Z Has data issue: false hasContentIssue false

X-band Silicon Carbide IMPATT Oscillator

Published online by Cambridge University Press:  21 March 2011

Konstantin V. Vassilevski
Affiliation:
Ioffe Institute, St. Petersburg, 194021, Russian Federation Electronic mail:kvv@pop.ioffe.rssi.ru
Alexandr V. Zorenko
Affiliation:
State Scientific & Research Institute “Orion”, Kyiv, 03057, Ukraine
Konstantinos Zekentes
Affiliation:
Microelectronics Research Group, FORTH, Heraklion, 711 10, Greece
Get access

Abstract

Pulsed X-band (8.2 - 12.4 GHz) IMPATT oscillators have been fabricated and characterized. They utilized 4H-SiC diodes with single drift p+-n-n+ structures and avalanche breakdown voltages of about 290 V. The microwave oscillations appeared at a threshold current of 0.3 A. The maximum measured output power was about 300 mW at input pulse current of 0.35 A and pulse duration of 40 ns.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Read, W. T., Bell Syst. Tech. J. 37, 401 (1958).Google Scholar
2. Tager, S., Melnikov, A. I., Kobelkov, G. P., Tsebiev, A. M., USSR author certificate No. 185965 and diploma onscientific discovery No. 24, priority of 27.X.1959.Google Scholar
3. Keyes, R. W., Silicon Carbide 1973, Columbia, Proceedings of the Conference, 534 (1974).Google Scholar
4. Muench, W., Pettenpaul, E., J. Appl. Phys., 48, 4823 (1977).Google Scholar
5. Tager, A. S., Izvestia VUZov SSSR, Radioelectronika, XXII, No. 10, 5 (1979) [in Russian].Google Scholar
6. Tager, A. S., Proc. of Second All-Union Conf. “Problems of Physics and Technology of Wide Band Gap Semiconductors”, Leningrad, 211 (1979) [inRussian].Google Scholar
7. Mehdi, I., Haddad, G. I., Mains, R. K., J. Appl. Phys. 64, 1533 (1988).Google Scholar
8. Vassilevski, K. V., Sov. Physics Semicond. 26, 994 (1992).Google Scholar
9. Sankin, V. I., Lepneva, A. A., Mater. Sci. Forum 338–342, 769 (2000).Google Scholar
10. Khan, I. A., Cooper, J. A. Jr, Mater. Sci. Forum 338–342, 761 (2000).Google Scholar
11. Vassilevski, K. V., Dmitriev, V. A., Zorenko, A. V., J. Appl. Phys. 74, 7612 (1993).Google Scholar
12. Neudeck, P. G., Fazi, C., IEEE Trans Electron Devices 18, No. 3, 96 (1997).Google Scholar
13. Carter, C. H., Jr., Tsvetkov, V. F., Glass, R.G., Henshall, D., Brady, M., Miller, S. G., Kordina, O., Irvine, K., Edmond, J. A., Kong, H.-S., Singh, R., Allen, S. T., Palmour, J. W., Mat. Sci. and Eng. B 61–62, 1 (1999).Google Scholar
14. Vassilevski, K. V., Zekentes, K., Constantinidis, G., Papanicolaou, N., Nikitina, I. P., Babanin, A. I., Mater.Sci. Forum 338–342, 1017 (2000).Google Scholar
15. Vassilevski, K., Zekentes, K., Constantinidis, G., Nikitina, I., Mat. Sci. and Eng. B 80, 370 (2001).Google Scholar
16. Vassilevski, K., Zekentes, K., Constantinidis, G., Strel'chuk, A., Solid State Electronics 44, 1173 (2000).Google Scholar
17. Konstantinov, A. O., Wahab, Q., Nordell, N., Linderfelt, U., Mat. Sci. Forum, 264–268, 513 (1998).Google Scholar
18. Vassilevski, K. V., Zekentes, K., Zorenko, A. V., Romanov, L. P., IEEE Electron Device Lett. 21, 485 (2000).Google Scholar
19. Vassilevski, K., Zekentes, K., Zorenko, A., Romanov, L., Mat. Res. Soc. Symp. 622, T1.8.1 (2000).Google Scholar
20 Vassilevski, K. V., Zorenko, A. V., Zekentes, K., Electronics Letters, 37, 467 (2001).Google Scholar
21. Vassilevski, K., Zekentes, K., Bogdanova, E., Lagadas, M., Zorenko, A., Mater. Sci. Forum. 353–356, 735 (2001)Google Scholar
22. Sze, S. M., Physics of Semiconductor Devices, Second Edition (John Wiley & Sons, Inc, USA, 1981) p. 602.Google Scholar