Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-28T10:07:09.128Z Has data issue: false hasContentIssue false

XPS Studies of the Si/SiO2 Interface With Synchrotron Radiation

Published online by Cambridge University Press:  10 February 2011

F. Rochet
Affiliation:
Laboratoire de Chimie-Physique, Matière et Rayonnement, Université Pierre et Marie Curie, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, France, roch@ccr.jussieu.fr LURE, Centre universitaire Paris Sud, bâtiment 209D, F-91898 Orsay cedex, France
F. Jolly
Affiliation:
Laboratoire de Chimie-Physique, Matière et Rayonnement, Université Pierre et Marie Curie, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, France, roch@ccr.jussieu.fr
G. Dufour
Affiliation:
Laboratoire de Chimie-Physique, Matière et Rayonnement, Université Pierre et Marie Curie, 11 rue Pierre et Marie Curie, F-75231 Paris cedex 05, France, roch@ccr.jussieu.fr
C. Grupp
Affiliation:
LURE, Centre universitaire Paris Sud, bâtiment 209D, F-91898 Orsay cedex, France
A. Taleb-Ibrahimi
Affiliation:
LURE, Centre universitaire Paris Sud, bâtiment 209D, F-91898 Orsay cedex, France
Get access

Abstract

Si 2p core-level spectroscopy is a unique tool to determine the chemical composition and spatial extension of the suboxide layer present at the Si/SiO2 interface. In the case of ultra-thin oxide films (thickness <10 Å), the high surface sensitivity provided by the tunability of synchrotron radiation allows the observation of four energetically well-separated oxidation states, generally attributed to a silicon atom with an increasing number of oxygen first neighbors, and hence often denoted Sin+(with n=1,…,4). After a brief review of two decades of XPS studies on the Si/SiO2 interface, we give an account of the recent debate concerning the possible contribution of the second oxygen neighbor shell to the chemical shift, which, if effective, would modify the picture of the interface. Then, we examine the benefit derived from the use of very high energy resolution (70 meV at hv=130 eV), and we try to determine, for this system, what are the limits of this spectroscopy. To illustrate the latter point, among various case studies (thermal oxides, room temperature adsorption etc.), we treat in more detail the case of the H-terminated Si(1 11) surface oxidized by atomic oxygen, and discuss our data in the light of previous XPS and vibrational spectroscopy studies.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Himpsel, F.J., McFeely, F.R., Taleb-Ibrahimi, A. and Yarmoff, J.A., Phys. Rev. B 38, 6084 (1988)Google Scholar
2.Himpsel, F.J., Meyerson, B.S., McFeely, F.R., Morar, J.F., Taleb-Ibrahimi, A. and Yarmoff, J.A., in: Proceedings of the Enrico Fermi School on “Photoemission and Absorption Spectroscopy of Solids and Interfaces with Synchrotron Radiation”, eds. Campagna, M. and Rosei, R., North Holland (Amsterdam, 1990)Google Scholar
3.Himpsel, F.J., Lapiano-Smith, D.A., Morar, J.F. and Bevk, J., The Physics and Chemistry of SiO2 and the Si-Sio2 Interface 2, Edited by Helms, C.R. and Deal, B.E., Plenum Press, New York 1993, p. 237.Google Scholar
4.Hricovini, K., Günther, R., Thiry, P., Taleb-Ibrahimi, A., Indlekofer, G., Bonnet, J.E., Dumas, P., Petroff, Y., Blase, X., Zhu, X., Louie, S.G., Chabal, T.J. and Thiry, P.A., Phys. Rev. Lett. 70, 1992 (1993)Google Scholar
5.Lu, Z.H., Graham, M.J., Day, S.P., Jiang, D.T. and Tan, K.H., J. Vac. Sci. Technol. B 13, 1626 (1993)Google Scholar
6.Capron, N., Lagraa, A., Carniato, S. and Boureau, G., J. of Non-Crys. Solids 216, 10 (1997)Google Scholar
7.Rochet, F., Poncey, Ch., Dufour, G., Roulet, H., Guillot, C., and Sirotti, F., J. Non-Crys. Solids, 216, 148 (1997)Google Scholar
8.Brown, F. C., Bachrach, R.Z., and Skibowski, M., Phys. Rev. B 15, 4781 (1977)Google Scholar
9.Bianconi, A. and Bauer, R.S., Surf. Sci. 99, 76 (1980)Google Scholar
10.Grunthaner, F.J., Grunthaner, P.J., Vasquez, R.P., Lewis, B.F., Maserjian, J., and Madhukar, A., Phys. Rev. Lett. 43, 1683 (1979)Google Scholar
11.Halbritter, J., J Mat. Res. 3, 506 (1988)Google Scholar
12. See Niwano, M., Katakura, H., Takeda, Y., Takakuwa, Y., Miyamoto, N., Hiraiwa, A. and Yagi, K., J. Vac. Sci. Technol. A 9, 195 (1991). Note that x-ray diffraction has evidenced the presence of ordered phases in the thermally grown films, representing not more than 1% of the oxide (A. Munkholm, S. Brennan, F. Comin and L. Ortega, Phys. Rev. Lett. 75, 4254 (1995)).Google Scholar
13.Tao, Y., Lu, Z.H., Graham, M.J. and Tay, S.P., J. Vac. Sci. Technol. B 12, 2500 (1994)Google Scholar
14.Hasegawa, E., Ishitani, A., Akimoto, K., Tsukiji, M. and Ohta, N., J. Electrochem. Soc. 142, 273 (1995)Google Scholar
15.Pasquarello, A., Hybersten, M.S. and Car, R., Phys. Rev. B 53, 10942 (1996)Google Scholar
16.Kobayashi, H., Kubota, T., Kawa, H., Nakato, Y. and Nishiyama, M., Appl. Phys. Lett. 73, 933 (1998)Google Scholar
17.Hattori, T., Aiba, T., Iijima, E., Okube, Y., Nohira, H., Tate, N. and Katayama, M., Appl. Surf. Sci. 104/105, 323 (1996)Google Scholar
18.Ikeda, H., Nakagawa, Y., Toshima, M., Furuta, S., Zaima, S. and Yasuda, Y., Appl. Surf. Sci. 117/118, 109 (1997)Google Scholar
19.Ogawa, H. and Hattori, T., Appl. Phys. Lett. 61, 577 (1992)Google Scholar
20.Banaszak-Holl, M.M. and McFeely, F.R., Phys. Rev. Lett. 71, 2441 (1993)Google Scholar
21.Banaszak-Holl, M.M., Lee, S. and McFeely, F.R., Appl. Phys. Lett. 65, 1097 (1995)Google Scholar
22.McFeely, F.R., Zhang, K.Z., Banaszak-Holl, M.M., Lee, S. and Bender, J.E. IV, J. Vac. Sci. Technol. B 14, 2824 (1996)Google Scholar
23.Eng, J. Jr, Raghavachari, K., Struck, L.M., Chabal, Y.J., Bent, B.E., Banaszak-Holl, M.M., McFeely, F.R., Michaels, A.M., Flynn, G.W., Christman, S.B., Chaban, E.E., Williams, G.P., Radermacher, K. and Mantl, S., J. Chem. Phys. 108, 8680 (1998)Google Scholar
24.Gates, S.M., Greenlief, C.M., Beach, D.B., and Holbert, P.A., J. Chem. Phys. 92, 3144 (1990)Google Scholar
25.Poncey, Ch., Rochet, F., Dufour, G., Roulet, H., Sirotti, F. and Panaccione, G., Surf. Sci. 338, 143 (1995)Google Scholar
26.Greeley, J.N. and Banaszak-Holl, M.M., Inorg. Chem. 37, 6014 (1998)Google Scholar
27.Pasquarello, A., Hybersten, M.S. and Car, R., Phys. Rev B 54, R2339 (1996)Google Scholar
28. The chemical oxide layer is prepared according to the procedure given by Ishikaza and Shiraki (Ishikaza, A. and Shiraki, Y., J. Electrochem. Soc. 133, 666 (1986)Google Scholar
29.Owman, F. and Mårtensson, P., Surf. Sci. Lett. 303 L367 (1994)Google Scholar
30. The oxidation of H-Si(111) by molecular O2 (H2O) is extremely slow. In moist air, a scanning tunneling microscopy work shows that it takes 800 h before one complete monolayer is oxidized (see U. Neuwald, H.E. Hessel, A. Feltz, U. Memmert and R.J. Behm, Appl. Phys. Lett. 60, 1307 (1992))Google Scholar
31.Himpsel, F.J., Hollinger, G. and Pollack, R.A., Phys. Rev. B 28, 7014 (1983)Google Scholar
32.Pasquarello, A., Hybertsen, M.S., and Car, R., J. Vac. Sci. Technol. B 14, 2809 (1996)Google Scholar
33.Karlsson, C.J., Landemark, E., Chao, Y.-C. and Uhrberg, R.I.G., Phys. Rev. Lett. 72, 4145 (1994)Google Scholar
34.Avouris, Ph. and Lyo, In-Whan, Surf. Sci. 242, 1 (1991)Google Scholar
35.Ezzehar, H., Stauffer, L., Leconte, J. and Minot, C., Surf. Sci. 388, 220 (1997)Google Scholar
36. It seems, nevertheless, that the Si-O modes region can give useful information on bonding if ab initio calculations of the vibrational modes are performed. For instance it has been recently shown that unusual bonding configurations (i.e. SiOSi epoxy rings) appear after annealings of a H2O exposed Si(001)-2×1 surface (see M.K. Weldon, K.T. Queeney, Y.J. Chabal, B.B. Stefanov, and K. Raghachavari, J. Vac. Sci. Technol. B 17, 1795 (1999)).Google Scholar
37.Demkov, A.A. and Sankey, O.F., Phys. Rev. Lett. 83, 2038 (1999)Google Scholar