Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-28T14:14:26.544Z Has data issue: false hasContentIssue false

XPS Study of the Al/SiO2 Interface Viewed From the SiO2 Side

Published online by Cambridge University Press:  22 February 2011

M.H. Hecht
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr., Pasadena, CA 91109
F.J. Grunthaner
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr., Pasadena, CA 91109
J. Maserjian
Affiliation:
Jet Propulsion Laboratory, California Institute of Technology4800 Oak Grove Dr., Pasadena, CA 91109
Get access

Abstract

We report on the first non-destructive measurement of the chemical and physical characteristics of the interface between bulk SiO2 and thick aluminum films. Both X-Ray Photoelectron Spictroscopy (XPS) and electrical measurements of unannealed, resistively evaporated Al films on thermal SiO2 indicate an atomically abrupt interface. Post metallization annealing (PMA) at 450°C induces reduction of the SiO2 by the aluminum, resulting in the layer ordering SiO2/Al2O3/Si/Al. The XPS measurement is performed from the SiO2 side after the removal of the Si substrate after etching with XeF2 gas and thinning of the SiO2 layer with HF:ETOH. This represents a powerful new approach to the study of metal-insulator and other interfaces.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Strausser, Y.E., Scheibner, E.J., Johannessen, J.S., Thin Solid Films 52, 203 (1978);CrossRefGoogle Scholar
1a Strausser, Y.E. and Majumder, K.S., J. Vac. Sci. Tech. 15, 238, (1978).CrossRefGoogle Scholar
2. Jung, T. and Titel, W., Phys. Stat. Sol. (a) 74, 85 (1982).Google Scholar
3. Candela, G.A., Galloway, K.F., Liu, Y.M., Fine, J., Thin Solid Films 82, 183 (1982).CrossRefGoogle Scholar
4. Olsen, L.C., Barton, D.L., Miller, W., Garnier, J.E., Turcotte, R.P., J. Appl. Phys. 51, 6393 (1980).CrossRefGoogle Scholar
5. Bauer, R.S., Bachrach, R.Z., Brillson, L.J., Appl. Phys. Lett. 37, 1006 (1980);CrossRefGoogle Scholar
5a Bachrach, R.Z. and Bauer, R.S., J. Vac. Sci. Tech. 16, 1149 (1979).CrossRefGoogle Scholar
6. Derrien, J., Commandre, M., Layet, J.M., Salvan, F., A. Cros, Appl. Phys. A28, 247 (1982);CrossRefGoogle Scholar
6a Derrien, J. and Commandre, M., Surf. Sci. 118, 32 (1982).Google Scholar
7. Roberts, S. and Dobson, P.J., J. Phys. D 14, L 17 (1981).Google Scholar
8. Adachi, T. and Helms, C.R., J. Vac. Sci. Tech. 19, 119 (1981).CrossRefGoogle Scholar
9. Winters, H.F. and Coburn, J.W., Appl. Phys. Lett. 34, 70 (1979).Google Scholar
10. Ibbotson, D.E., Flamm, D.L., Mucha, J.A., Donnelly, V.M., to appear in Appl. Phys. Lett.Google Scholar
11. Flodstrom, S.A., Bachrach, R.Z., Bauer, R.S., Hagstrom, S.B.il., Phys. Rev. Lett. 37, 1282 (1976);CrossRefGoogle Scholar
11a Flodstrom, S.A., Martinsson, C.H.B., Bachrach, R.Z., Hagstrom, S.B.M., Bauer, R.S., Phys. Rev. Lett. 40, 907 (1978);CrossRefGoogle Scholar
11b Bachrach, R.Z., Flodstrom, S.A., Bauer, R.S., Hagstrom, S.B.M., Chadi, D.J., J. Vac. Sci. Tech. 15, 488 (1978).Google Scholar
12. Maserjian, J., Petersson, G., Svensson, C., Solid-State Electron. 17, 335 (1974).Google Scholar
13. Maserjian, J., J. Vac. Sci. Technol. 11, 996 (1974).CrossRefGoogle Scholar
14. Maserjian, J. and Zamani, N., J. Appl. Phys. 53, 559 (1982).Google Scholar
15. Ashley, J.C. and Tung, C.J., Surf. and Int. Anal. 4, 52 (1982).Google Scholar
16. Blattner, R.J., Braundmeier, A.J. Jr., J. Vac. Sci. Technol. 20, 320 (1982).Google Scholar
17. Massoud, H., Technical Report No. G502–1, Stanford Electronics Laboratory, Stanford, CA 94305.Google Scholar