Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-15T06:53:40.473Z Has data issue: false hasContentIssue false

X-Ray Characterization of Mbe-Grown InxGal-xSb/InAs Strained Layer Superlattices

Published online by Cambridge University Press:  22 February 2011

P. C. Chow
Affiliation:
Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204-5504
A. Vigliante
Affiliation:
Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204-5504
S. C. Moss
Affiliation:
Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204-5504
J. T. Zborowski
Affiliation:
Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204-5504
T. D. Golding
Affiliation:
Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204-5504
H. D. Shih
Affiliation:
Department of Physics and Space Vacuum Epitaxy Center, University of Houston, Houston, TX 77204-5504
Get access

Abstract

Strain can play a critical role in determining the band structure and optical properties of semiconducting superlattices. Mailhiot and Smith [1] have predicted that strain, induced by mismatch, in InxGal-xSb/InAs makes the superlattice a candidate for infrared detectors. We present a preliminary analysis of the structure, in particular the strain in the layers, of an InxGal-xSb/InAs superlattice, which shows infrared absorption. Our ultimate objective is to relate the structural properties to the optical absorption and an extended (kinematical) diffraction treatment is presented for accomplishing this.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mailhiot, C. and Smith, D. L., J. Vac. Sci. Tech. B.5 1268 (1987).CrossRefGoogle Scholar
2. Schulman, J. N. and McGill, T. C., Appl. Phys. Lett. 34, 663 (1979).CrossRefGoogle Scholar
3. Osboum, G. C., Dawson, L. R., Biefeld, R. M., Zipperian, T. E., Fritz, I. J. and Doyle, B. L., J. Vac. Sci. Tech. A 5 3150 (1987).Google Scholar
4. Choi, K. K., Levine, B. F., Bethea, C. G., Walker, J. and Walker, R. J., Appl. Phys. Lett. 50, 1814 (1987).CrossRefGoogle Scholar
5. Fashe, R., Zborowski, J. T., Golding, T. D., Shih, H. D., Chow, P. C., Matsuichi, K., Covington, B. C., Chi, A., Zheng, J. and Schaake, H. F., presented at the IVth International MBE Conference, San Diego 1990 (to be published in J. Cryst. Growth).Google Scholar
6. Segmüller, A. and Blakeslee, A. E., J. Appl. Crys. 6, 19 (1973).CrossRefGoogle Scholar
7. McWhan, D. B., in Synthetic Modulated Structures, edited by Chang, L. L. and Giessen, B. C. (Academic Press, Inc., New York, 1985), p. 43.;D. B. McWhan in NATO Summer School, France (1986).CrossRefGoogle Scholar
8. Speriosu, V. S., J. Appl. Phys. 52, 6094 (1981).CrossRefGoogle Scholar
9. Bartels, W. J., Homstra, J. and Lobeek, D. J. W., Acta Cryst. A 42, 539 (1986).CrossRefGoogle Scholar
10. Segmüiller, A., Krishna, P. and Esaki, L., J. Appl. Cryst. 10, 1 (1977).CrossRefGoogle Scholar
11. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27 118 (1974);29 273 (1975); 32 265 (1976).Google Scholar
12. People, R. and Bean, J.C., Appl. Phys. Lett. 47 322 (1985).CrossRefGoogle Scholar
13. Van der Merve, J.H., J. Appl. Phys. 34 123 (1963).CrossRefGoogle Scholar
14. Neumann, D. A., Zabel, H. and Morkoc, H., Appl. Phys. Letts. 43, 59 (1983).CrossRefGoogle Scholar
15. Zborowski, J.T., Golding, T.G., Shih, H.D., and Schaake, H.F. (to be published).Google Scholar