Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-28T21:18:26.114Z Has data issue: false hasContentIssue false

X-ray Diffraction Study of InGaN/GaN Superlattice Implanted with Eu3+ Ions

Published online by Cambridge University Press:  31 January 2011

Mohammad Ahmad Ebdah
Affiliation:
physics_clark@yahoo.com, Ohio University, physics, Athens, Ohio, United States
Martin E. Kordesch
Affiliation:
kordesch@ohio.edu, Ohio University, Physics, Athens, Ohio, United States
Andre Anders
Affiliation:
aanders@lbl.gov, Lawrence Berkeley National Laboratory, Berkeley, California, United States
Wojciech M. Jadwisienczak
Affiliation:
jadwisie@ohio.edu, Ohio University, School of EECS, Stocker Center 363, Athens, Ohio, 45701, United States, 740-593-2067, 740-593-0007
Get access

Abstract

In this work, europium implanted InGaN/GaN SL with a fixed well/barrier thickness ratio grown by metal-organic chemical-vapor deposition (MOCVD) on GaN/(0001) sapphire substrate were investigated. The as-grown and Eu ion implanted InGaN/GaN SLs were annealed at different temperatures ranging from 600°C to 950°C in nitrogen ambient. The quality of the SL interfaces in undoped and implanted structures has been investigated by X-ray diffraction (XRD) at room temperature. The characteristic satellite peaks of SLs were measured for the (0002) reflection up to the second order in the symmetric Bragg geometry. The XRD simulation spectrum of the as-grown SL agrees well with the experimental results. The simulation results show x=0.06 atomic percent the InGaN well sub-layers, with thicknesses of 2.4 and 3.3 nm for single InGaN well and GaN barrier, respectively. It was observed that annealing of the undoped SL does not significantly affect the interfacial quality of the superstructure, whereas, the Eu ion implanted InGaN/GaN SL undergo partial induced degradation. Annealing the implanted SLs shows a gradual improvement of the multilayer periodicity and a reduction of the induced degradation with increasing the annealing temperature as indicated by the XRD spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Steckl, A., and Zavada, J., MRS Bull. 24, 33 (1999).Google Scholar
2 Lozykowski, H., Jadwisienczak, W., and Brown, I., Appl. Phys. Lett. 74, 1129 (1999).Google Scholar
3 Steckl, A., Park, J., and Zavada, J., Materials Today 10, 20 (2007).Google Scholar
4 Dahal, R., Ugolini, C., Lin, J., Jiang, H., and Zavada, J., Appl. Phys. Lett. 93, 033502 (2008).Google Scholar
5 Nakamura, S., Mukai, T., and Senoh, M., Appl. Phys. Lett. 64, 1687 (1994).Google Scholar
6 Amano, H., Tanaka, T., Kunii, Y., Kim, S. T., and Akasaki, I., Appl. Phys. Lett. 64, 1377 (1994).Google Scholar
7 Khan, M. Asif, Krishnankutty, S., Skogman, R. A., Kuznia, J. N., Olson, D. T., and George, T., Appl. Phys. Lett. 65, 520 (1994).Google Scholar
8 Singh, R., Doppalapudi, D., Moustakas, T. D., and Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
9 El-Masry, N. A., Piner, E. L., Liu, S. X., and Bedair, S. M., Appl. Phys. Lett. 72, 40 (1998).Google Scholar
10 Ebdah, M. A., Hoy, D. R., and Kordesch, M. E., Mat. Res. Soc. Symp. Proc. 1151, SS0305, (2009).Google Scholar
11 Gusev, O., Prineas, J., Lindmark, E., Bresler, M., Khitrova, G., Gibbs, H., Yassievich, I., Zakharchenya, B., and Masterov, V., J. Appl. Phys. 82, 1815 (1997).Google Scholar
12 Masterov, V., and Gerchikov, L., Semiconductors 33, 616 (1999).Google Scholar
13 Ebdah, M. A., Jadwisienczak, W. M., Kordesch, M. E., Ramadan, S., Morkoc, H., and Anders, A., Mat.Res. Soc. Symp. Proc. 1111, D0412 (2009).Google Scholar
14 Lozykowski, H. J., and Jadwisienczak, W.M., Han, J., Brown, I.G., Appl. Phys. Lett. 77, 767 (2000).Google Scholar
15 X'Pert Epitaxy software v.4.2 from PANalytical B. V., Netherlands, http://www.panalytical.com.Google Scholar
16 Li, W., Bergman, P., Ivanov, I., Ni, W., Amano, H., and Akasa, I., Appl. Phys. Lett. 69, 22 (1996).Google Scholar
17 Vegard, L., Z. Phys. 5, 17, (1921).Google Scholar
18 Dyck, J., Kash, K., Hayman, C., Argoitia, A., Grossner, M., Angus, J., and Zhou, Wei-Lie, J. Mater. Res. 14, 2411 (1999).Google Scholar
19 Angerer, H. et al, Appl. Phys. Lett. 71, 1504 (1997).Google Scholar
20 Schuster, M., Gervais, P. O., Jobst, B., Hosler, W., Averbeck, R., Riechert, H., Iberi, A., and Stommer, R., J. Phys. D 32, A56 (1999).Google Scholar
21 Wright, A., J. Appl. Phys. 82, 2833 (1997).Google Scholar
22 Parker, C. A., Roberts, J. C., Bedair, S. M., Reed, M. J., Liu, S. X., and El-Masry, N. A., Appl. Phys. Lett. 75, 2776 (1999).Google Scholar
23 Vickers, M. E., Kappers, M. J., Smeeton, T. M., Thrush, E. J., Barnard, J. S. and Humphreys, C. J., J. Appl. Phys. Lett. 94, 1565 (2003).Google Scholar
24 Jin, C., Zhang, B., Ling, Z., Wang, J., Hou, X., Segawa, Y., Wang, X., J. Appl. Phys. 81, 8, (1997).Google Scholar
25 Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118 (1974).Google Scholar
26 Whan, R. E. and Arnold, G. W., Appl. Phys. Lett. 17, 378 (1970).Google Scholar
27 EerNisse, E. P., Appl. Phys. Lett. 18, 581 (1971); also E. P. EerNisse, Sandia Report SC-RR-710424 (1971).Google Scholar
28 Myers, D. R., Gourely, P. L., and Peercy, P. S., J. Appl. Phys. 54, 5032 (1983).Google Scholar
29 Myers, D. R., Picraux, S. T., Doyle, B. L., Arnold, G. W., and Biefeld, R. M., J. Appl. Phys. 60, 3631 (1986).Google Scholar