Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T07:18:59.287Z Has data issue: false hasContentIssue false

X-Ray Photoelectron Spectroscopy Investigation of the Interaction of NF3 with Silicon

Published online by Cambridge University Press:  15 February 2011

T. W. Little
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120
F. S. Ohuchi
Affiliation:
Department of Materials Science and Engineering, University of Washington, Box 352120, Seattle, WA 98195-2120
Get access

Abstract

The interaction of nitrogen trifluoride (NF3) with silicon (Si) surfaces has been investigated by x-ray photoelectron spectroscopy (XPS). Si (100) surfaces were subjected to NF3 ion bombardment as a means of approximating plasma processing under controlled conditions. Samples were also exposed to actual NF3 DC plasmas and the results compared to ion beam and plasma processing using nitrogen (N2). The results indicate that nitridation of silicon is possible using NF3 although it seems to be limited by simultaneous etching. Additionally, results suggest bonding between both Si-F and Si-N species and perhaps F-N-Si moieties. NF3 plasma processing has lead to curious results for F 1s spectra which are not fully understood at present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Barkanic, J. A., Reynolds, D. M., Jacodine, R. J., Stenger, H. G., Parks, J., Vedage, H., Solid State Technol., April 109115 (1989).Google Scholar
2. Bums, G. P., Appl. Phys. Lett. 53 (15), 14231425 (1988).Google Scholar
3. Donnelly, V. M., Flamm, D. L., Dautremont-Smith, W. C., and Werder, D. J., J. Appl. Phys. 55 (1), 242252 (1984).Google Scholar
4. Greenberg, K. E. and Verdeyen, J. T., J. Appl. Phys. 57 (5), 15961601 (1985).Google Scholar
5. Konuma, M. and Bauser, E., J. Appl. Phys. 74 (1), 6267 (1993).Google Scholar
6. Konuma, M. and Bauser, E., J. Appl. Phys. 74 (3), 15751578 (1993).Google Scholar
7. Ianno, N. J., Greenberg, K. E., Verdeyen, J. T., J. Electrochem. Soc. 128 (10), 21742179 (1981).Google Scholar
8. Bower, D. H., J. Electrochem. Soc. 129 (4), 795799 (1982).Google Scholar
9. Delfino, M., Chung, B.-C., Tsai, W., Salimian, S., Favreau, D. P., Merchant, S. M., J. Appl. Phys. 72 (8) 37183725 (1992).Google Scholar
10. Flamm, D. L. and Herb, G. K., in Plasma Etching: An Introduction, edited by Manos, D. M. and Flamm, D. L. (Academic Press, Inc., San Diego, 1989), p. 17.Google Scholar
11. Taylor, J. A., Lancaster, G. M., Ignatiev, A., and Rabalais, J. W., J. Chem. Phys. 68 (4), 17761784 (1978).Google Scholar
12. Park, K. H., Kim, B. C., and Kang, H., J. Chem. Phys. 97 (4), 27422749 (1992).Google Scholar
13. Kim, B. C., Kang, H., Kim, C. Y., Chung, J. W., Surf. Sci. 301, 295305 (1994).Google Scholar
14. McFeely, F. R., Morar, J. F., and Himpsel, F. J., Surf. Sci. 165, 277287 (1986).Google Scholar
15. Perrin, J., Meot, J., Siefert, J.-M., Schmitt, J., Plasma Chem. and Plasma Process., 10 (4), 571587 (1990).Google Scholar
16. Seel, M. and Bagus, P. S., Phys. Rev. B 28 (4), 20232038 (1983).Google Scholar
17. Bagus, P. S. in Plasma Sythesis and Etching of Electronic Materials, edited by Chang, R. P. H. and Abeles, B. (Mater. Res. Soc. Proc. 38, Pittsburgh, PA, 1985) pp. 179188.Google Scholar