Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-28T14:06:43.107Z Has data issue: false hasContentIssue false

X-ray topography and EBIC studies of misfit dislocations in strained layer structures

Published online by Cambridge University Press:  26 February 2011

N. Hamaguchi
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University
T. P. Humphreys
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University
C. A. Parker
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University
S. M. Bedair
Affiliation:
Department of Electrical and Computer Engineering, North Carolina State University
B-L. Jiang
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695
Z. J. Radzimski
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695
G. A. Rozgonyi
Affiliation:
Department of Material Science and Engineering, North Carolina State University, Raleigh, NC 27695
Get access

Abstract

X-ray topography(XRT) and EBIC have been used to study the generation of misfit dislocations in strained layer structures. Two structures studied were GaAs1−yPy(y=0.15) film and SLS consisting of InxGa1−xAs(x=0.08) and GaAs1−y Py(y=0.16) layers. XRT and EBIC techniques gave consistent results for the behavior of dislocations. The value of the critical thickness for generation of misfit dislocations in the former was found to be few times larger than that in the latter. EBIC image showed that a SLS lattice matched to the substrate is effective in reducing defects originating from the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Fritz, I. J., Picraux, S. T., Dawson, L. R., Drummond, T. J., Laidig, W. D., and Anerson, N. G., Appl. Phys. Lett. 46, 967(1985).Google Scholar
2.Andersson, T. G., Chen, Z. G., Kulakovskii, V. D., Uddin, A., and Vallin, J. T., Appl. Phys. Lett. 51, 752(1987).Google Scholar
3.Matthews, J. W. and Blakeslee, A. E., J. Cryst. Growth 27, 118(1974).Google Scholar
4.Orders, P. J. and Usher, B. F., Appl. Phys. Lett. 50, 980(1987).Google Scholar
5.People, R. and Bean, J. C., Appl. Phys. Lett. 47, 322(1985); 49, 229(1986).Google Scholar
6.Fiory, A. T., Bean, J. C., Feldman, L. C., and Robinson, I. K., J. Appl. Phys. 58, 1227(1984).Google Scholar
7.Dodson, B. W. and Tsao, J. Y., Appl. Phys. Lett. 51, 1326(1987).Google Scholar
8.Bean, J.C., Feldman, L. C., Fiory, A. T., Nakahara, S., and Robinson, I. K., J. Vac. Sci. Technol. A2, 436(1984).Google Scholar
9.Tischler, M. A., Katsuyama, T., EI-Masry, N. A., and Bedair, S. M., Appl. Phys. Lett. 46, 294(1985).Google Scholar
10.Bedair, S. M., Katsuyama, T., Timmons, M., and Tischler, M. A., IEEE Electron Devices Lett. EDL–5, 45 (1984).Google Scholar
11.EI-Masry, N. A., Tarn, J. C. L., Humphreys, T. P., Hamaguchi, N., Karam, N. H., and Bedair, S. M., Appl. Phys. Lett. 51,1608 (1987).Google Scholar
12.Beair, S. M., Humphreys, T. P., EI-Masry, N.A., Lo, Y., Hamaguchi, N., Lamp, C. D., Tuttle, A. A., Dreifus, D. L., and Russel, P., Appl. Phys. Lett. 49, 942(1986).Google Scholar