In order to advance the development of extremely hard coatings, new homogeneous and metastable films were prepared by magnetron sputter ion plating (MSIP) and arc ion plating (AIP) in the DC. or RF. mode.
In the present study coatings in the systems Ti-B-C-N, Si-C-N and amorphous carbon coatings (ADLC) were investigated and compared with other hard coatings. Multicomponent layers of different compositions and structures were deposited by varying the reactive gases methane (CH4) and nitrogen (N2) and the dominant process parameters (e. g. C/V-characteristic of the cathode, substrate bias).
X-ray diffraction studies of the Ti-B-C-N coatings revealed either an amorphous structure or crystallization in a hexagonal lattice. The ADLC and Si-C-N coatings were always amorphous. Electron microprobe analysis and auger electron spectroscopy were used to determine the coating compositions.
The tribological properties were determined by a ball on disc tribometer (e.g. friction coefficent), a pin on disc tribometer and a special abrasive wear test.