Current hot isostatic consolidation methodology used for the fabrication of complex-shaped Si3N4-based components requires the use of an expensive glass encapsulation technique and extended thermal exposure (in hours) of the specimen. An alternative consolidation approach involving the use of solid pressure transmitting media under high pressure, has enabled the consolidation of Si3N4 alloys without the need for glass encapsulation.
Characterization of microstructures and mechanical properties of this (MOR, fracture toughness) material has been carried out and will be presented. It has been noted that in Si 3N4/8%Y2O3-4%Al2O3 composition, consolidated using this approach, a significantly larger volume fraction of α phase has been retained compared with typically observed conversion in α⇒ β in hot isostatically pressed material or sintered material.
Key issues for addressing densification and microstructure control using this process are presented. This rapid consolidation approach appears to be a promising alternative to hot isostatic pressing for the fabrication of complex-shaped Si3N4 components.